Source code for FlexCare: Leveraging Cross-Task Synergy for Flexible Multimodal Healthcare Prediction published in KDD 2024.
📄Paper is available at: ACM DL or arXiv
This project is run in a conda virtual environment on Ubuntu 20.04 with CUDA 11.1.
- torch==1.10.1+cu111
- Python==3.7.9
- transformers==4.30.2
- tokenizers==0.13.3
- huggingface-hub==0.16.4
You will first need to request access for MIMIC dataset:
- MIMIC-IV 2.0 https://physionet.org/content/mimiciv/2.0/
- MIMIC-CXR-JPG 2.0.0 https://physionet.org/content/mimic-cxr-jpg/2.0.0/
- MIMIC-IV-NOTE 2.2 https://physionet.org/content/mimic-iv-note/2.2/
Then follow the steps in mimic4extract to build datasets for all tasks in directory [data].
In addition, we use biobert-base-cased-v1.2 as the pretrained text encoder, please download files in https://huggingface.co/dmis-lab/biobert-base-cased-v1.2, and put them into the directory [mymodel/pretrained]
python main_mt.py --data_path data --ehr_path data/ehr --cxr_path data/cxr --task in-hospital-mortality,length-of-stay,decompensation,phenotyping,readmission,diagnosis --epochs 25 --lr 0.0001 --device {gpu id} --seed {40,42,44,46,48}
@inproceedings{xu2024flexcare,
title={FlexCare: Leveraging Cross-Task Synergy for Flexible Multimodal Healthcare Prediction},
author={Xu, Muhao and Zhu, Zhenfeng and Li, Youru and Zheng, Shuai and Zhao, Yawei and He, Kunlun and Zhao, Yao},
booktitle={Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining},
pages={3610--3620},
year={2024}
}
