git clone https://github.com/barium-project/qubit-reliability.git # Clone repo
cd qubit-reliability # Move to directory
# Download data directory from https://drive.google.com/open?id=1I3z8NVTUHmsuCv1mtkwgr_mNwuqicIBv
python3.8 -m venv env # Create virtual environment
source env/bin/activate # Activate virtual environmnet
pip install -r requirements.txt # Install dependencies
python -m src.investigation.analyze_threshold_classifier # Run analyze_threshold_classifier.py
├── data <- https://drive.google.com/open?id=1I3z8NVTUHmsuCv1mtkwgr_mNwuqicIBv
│ ├── artificial <- Artificial data from Monte Carlo sampling
│ └── processed <- Real datasets
│
├── notebooks <- Jupyter notebooks.
│
├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
│ └── figures <- Generated graphics and figures to be used in reporting
│
├── src <- Source code for use in this project.
│ ├── features <- Scripts to turn raw data into features for modeling
│ │ └── build_features.py
│ │
│ ├── investigation <- Scripts to turn raw data into features for modeling
│ │ ├── analyze_splits.py
│ │ ├── analyze_threshold_classifier.py
│ │ └── analyze_neural_network_classifier.py
│ │
│ ├── models <- Scripts to train models and then use trained models to make
│ │ │ predictions
│ │ ├── threshold_classifiers.py
│ │ ├── traditional_classifiers.py
│ │ └── neural_network_classifiers.py
│ │
│ └── visualization
│ └── visualize.py
│
├── README.md <- The top-level README for developers using this project.
│
└── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
generated with `pip freeze > requirements.txt`
Bright qubit = 0 = negative
Dark qubit = 1 = positive
Bright state error = Actually bright, but predicted dark = False positive
Dark state error = Actually dark, but predicted bright = False negative