ConeGS: Error-Guided Densification Using Pixel Cones for Improved Reconstruction with Fewer Primitives
Bartłomiej Baranowski · Stefano Esposito · Patricia Gschoßmann · Anpei Chen · Andreas Geiger
The code was tested on Python 3.11 with PyTorch 2.5.1 with CUDA Toolkit 12.1 and 11.8.
Installed CUDA Toolkit is required. To run the code install the following packages:
git clone https://github.com/baranowskibrt/conegs.git --recursive
conda create -n conegs python=3.11
conda install pytorch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 pytorch-cuda=12.1 -c pytorch -c nvidia
pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch
pip install git+https://github.com/nerfstudio-project/nerfacc.git
pip install submodules/simple-knn
pip install submodules/diff-gaussian-rasterization
pip install -r requirements.txtFor a particular scene run (Mip-NeRF360's bicycle scene as an example) with a specified budget run:
python train.py --config-name defaults.yaml gaussian_model.source_path=../scenes_mipnerf scene_name=bicycle run_name=benchmark optimization.max_points=100000 gaussian_model.images=images_4
And without budget:
python train.py --config-name defaults.yaml gaussian_model.source_path=../scenes_mipnerf scene_name=bicycle run_name=benchmark optimization.max_points=100000 gaussian_model.images=images_4
For all benchmarks on a specific budget adjust the max points (primitives), and run:
python full_eval.py --mipnerf360 ../scenes_mipnerf --tanksandtemples ../scenes_tt --deepblending ../scenes_db --ommo ../scenes --output_path benchmarks --common_args " optimization.max_points=100000"
Or for unbudget case:
python full_eval.py --mipnerf360 ../scenes/ --tanksandtemples ../scenes/ --deepblending ../scenes --ommo ../scenes --output_path benchmarks --common_args " optimization.max_points=0 optimization.gaussian_percentage_increase=0.02"
You can access the datasets we evaluated on here:
Check out the 3DGS code for the preprocessing needed.
@inproceedings{baranowski2026conegs,
title={ConeGS: Error-Guided Densification Using Pixel Cones for Improved Reconstruction with Fewer Primitives},
author={Bartłomiej Baranowski and Stefano Esposito and Patricia Gschoßmann and Anpei Chen and Andreas Geiger},
year={2026},
booktitle = {2026 International Conference on 3D Vision (3DV)},
}

