Basic cryptography primitives implementation, a companion to "Criptografia, Métodos e Algoritmos".
Started in July/2025, by Daniel Balparda. Since version 1.0.2 it is PyPI package:
https://pypi.org/project/transcrypto/
- TransCrypto
- License
- Design assumptions / Disclaimers
- CLI Apps
- Programming API
- Install
- Base Library
- Humanized Sizes (IEC binary)
- Humanized Decimal Quantities (SI)
- Humanized Durations
- Execution Timing
- Serialization Pipeline
- Cryptographically Secure Randomness
- Computing the Greatest Common Divisor
- Fast Modular Arithmetic
- Primality testing & Prime generators, Mersenne primes
- Cryptographic Hashing
- Symmetric Encryption Interface
- Crypto Objects General Properties (
CryptoKey) - AES-256 Symmetric Encryption
- RSA (Rivest-Shamir-Adleman) Public Cryptography
- El-Gamal Public-Key Cryptography
- DSA (Digital Signature Algorithm)
- Public Bidding
- SSS (Shamir Shared Secret)
- Appendix: Development Instructions
Copyright 2025 Daniel Balparda balparda@github.com
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License here.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
- The library is built to have reference, reliable, simple implementations of math and crypto primitives (e.g.
RawEncrypt()/RawSign()and friends plus all the low-level primality and modular arithmetic). The issue is not that the library is unsafe, it is that the library is full of places that allow you to shoot yourself in the foot if you don't know what you are doing. - The library also has advanced top-level methods that are cryptographically safe and might be used in real-world scenarios (e.g.
Encrypt()/Sign()and friends). - All library methods'
intare tailored to be efficient with arbitrarily large integers. - Everything should work, as the library is extensively tested, but not necessarily the most efficient or safe for real-world cryptographic use. For real-world crypto you might consider other optimized/safe libraries that were built to be resistant to malicious attacks.
- All operations in this library may be vulnerable to timing attacks. This may be a problem to your use-case or not depending on the situation.
All that being said, extreme care was taken that this is a good library with a solid safe implementation. Have fun!
- SafeTrans/
safetrans: Safe cryptographic operations; - TransCrypto/
transcrypto: Does all the operations but allows you to shoot yourself in the foot; - Profiler/
profiler: Measure transcrypto performance.
To use in your project just do:
pip3 install transcryptoand then from transcrypto import rsa (or other parts of the library) for using it.
Known dependencies:
from transcrypto import utils
utils.HumanizedBytes(512) # '512 B'
utils.HumanizedBytes(2048) # '2.00 KiB'
utils.HumanizedBytes(5 * 1024**3) # '5.00 GiB'Converts raw byte counts to binary-prefixed strings (B, KiB, MiB, GiB, TiB, PiB, EiB). Values under 1024 bytes are returned as integers with B; larger values use two decimals.
- standard: 1 KiB = 1024 B, 1 MiB = 1024 KiB, …
- errors: negative inputs raise
InputError
# Base (unitless)
utils.HumanizedDecimal(950) # '950'
utils.HumanizedDecimal(1500) # '1.50 k'
# With a unit (trimmed and attached)
utils.HumanizedDecimal(1500, ' Hz ') # '1.50 kHz'
utils.HumanizedDecimal(0.123456, 'V') # '0.1235 V'
# Large magnitudes
utils.HumanizedDecimal(3_200_000) # '3.20 M'
utils.HumanizedDecimal(7.2e12, 'B/s') # '7.20 TB/s'Scales by powers of 1000 using SI prefixes (k, M, G, T, P, E). For values <1000, integers are shown as-is; small floats show four decimals. For scaled values, two decimals are used and the unit (if provided) is attached without a space (e.g., kHz).
- unit handling:
unitis stripped;<1000values include a space before the unit ('950 Hz') - errors: negative or non-finite inputs raise
InputError
utils.HumanizedSeconds(0) # '0.00 s'
utils.HumanizedSeconds(0.000004) # '4.000 µs'
utils.HumanizedSeconds(0.25) # '250.000 ms'
utils.HumanizedSeconds(42) # '42.00 s'
utils.HumanizedSeconds(3661) # '1.02 h'
utils.HumanizedSeconds(172800) # '2.00 d'Chooses an appropriate time unit based on magnitude and formats with fixed precision:
< 1 ms: microseconds with three decimals (µs)< 1 s: milliseconds with three decimals (ms)< 60 s: seconds with two decimals (s)< 60 min: minutes with two decimals (min)< 24 h: hours with two decimals (h)≥ 24 h: days with two decimals (d)- special case:
0 → '0.00 s' - errors: negative or non-finite inputs raise
InputError
A flexible timing utility that works as a context manager, decorator, or manual timer object.
from transcrypto import base
import timewith base.Timer('Block timing'):
time.sleep(1.2)
# → logs: "Block timing: 1.20 s" (default via logging.info)Starts timing on entry, stops on exit, and reports elapsed time automatically.
@base.Timer('Function timing')
def slow_function():
time.sleep(0.8)
slow_function()
# → logs: "Function timing: 0.80 s"Wraps a function so that each call is automatically timed.
tm = base.Timer('Inline timing', emit_print=True)
tm.Start()
time.sleep(0.1)
tm.Stop() # prints: "Inline timing: 0.10 s"Manual control over Start() and Stop() for precise measurement of custom intervals.
- Label: required, shown in output; empty labels raise
InputError - Output:
emit_log=True→logging.info()(default)emit_print=True→ directprint()- Both can be enabled
- Format: elapsed time is shown using
HumanizedSeconds() - Safety:
- Cannot start an already started timer
- Cannot stop an unstarted or already stopped timer
(raises
Error)
These helpers turn arbitrary Python objects into compressed and/or encrypted binary blobs, and back again — with detailed timing and size logging.
from transcrypto import basedata = {'x': 42, 'y': 'hello'}
# Basic serialization
blob = base.Serialize(data)
# With compression and encryption
blob = base.Serialize(
data,
compress=9, # compression level (-22..22, default=3)
key=my_symmetric_key # must implement SymmetricCrypto
)
# Save directly to file
base.Serialize(data, file_path='/tmp/data.blob')Serialization path:
obj → pickle → (compress) → (encrypt) → (save)
At each stage:
- Data size is measured using
HumanizedBytes - Duration is timed with
Timer - Results are logged once at the end
Compression levels:
compress uses zstandard; see table below for speed/ratio trade-offs:
| Level | Speed | Compression ratio | Typical use case |
|---|---|---|---|
| -5 to -1 | Fastest | Poor (better than no compression) | Real-time or very latency-sensitive |
| 0…3 | Very fast | Good ratio | Default CLI choice, safe baseline |
| 4…6 | Moderate | Better ratio | Good compromise for general persistence |
| 7…10 | Slower | Marginally better ratio | Only if storage space is precious |
| 11…15 | Much slower | Slight gains | Large archives, not for runtime use |
| 16…22 | Very slow | Tiny gains | Archival-only, multi-GB datasets |
Errors: invalid compression level is clamped to range; other input errors raise InputError.
# From in-memory blob
obj = base.DeSerialize(data=blob)
# From file
obj = base.DeSerialize(file_path='/tmp/data.blob')
# With decryption
obj = base.DeSerialize(data=blob, key=my_symmetric_key)Deserialization path:
data/file → (decrypt) → (decompress if Zstd) → unpickle
- Compression is auto-detected via Zstandard magic numbers.
- All steps are timed/logged like in
Serialize.
Constraints & errors:
- Exactly one of
dataorfile_pathmust be provided. file_pathmust exist;datamust be at least 4 bytes.- Wrong key or corrupted data can raise
CryptoError.
These helpers live in base and wrap Python’s secrets with additional checks and guarantees for crypto use-cases.
from transcrypto import base# Generate a 256-bit integer (first bit always set)
r = base.RandBits(256)
assert r.bit_length() == 256Produces a crypto-secure random integer with exactly n_bits bits (≥ 8). The most significant bit is guaranteed to be 1, so entropy is ~n_bits−1 — negligible for large crypto sizes.
- errors:
n_bits < 8→InputError
# Uniform between [10, 20] inclusive
n = base.RandInt(10, 20)
assert 10 <= n <= 20Returns a crypto-secure integer uniformly distributed over the closed interval [min_int, max_int].
- constraints:
min_int ≥ 0and< max_int - errors: invalid bounds →
InputError
deck = list(range(10))
base.RandShuffle(deck)
print(deck) # securely shuffled orderPerforms an in-place Fisher–Yates shuffle using secrets.randbelow. Suitable for sensitive data ordering.
- constraints: sequence length ≥ 2
- errors: shorter sequences →
InputError
# 32 random bytes
b = base.RandBytes(32)
assert len(b) == 32Generates n_bytes of high-quality crypto-secure random data.
- constraints:
n_bytes ≥ 1 - errors: smaller values →
InputError
>>> from transcrypto import base
>>> base.GCD(462, 1071)
21
>>> base.GCD(0, 17)
17The function is O(log(min(a, b))) and handles arbitrarily large integers. To find Bézout coefficients (x, y) such that ax + by = gcd(a, b) do:
>>> base.ExtendedGCD(462, 1071)
(21, -2, 1)
>>> 462 * -2 + 1071 * 1
21Use-cases:
- modular inverses:
inv = x % mwhengcd(a, m) == 1 - solving linear Diophantine equations
- RSA / ECC key generation internals
from transcrypto import modmath
m = 2**256 - 189 # a large prime modulus
# Inverse ──────────────────────────────
x = 123456789
x_inv = modmath.ModInv(x, m)
assert (x * x_inv) % m == 1
# Division (x / y) mod m ──────────────
y = 987654321
z = modmath.ModDiv(x, y, m) # solves z·y ≡ x (mod m)
assert (z * y) % m == x % m
# Exponentiation ──────────────────────
exp = modmath.ModExp(3, 10**20, m) # ≈ log₂(y) time, handles huge exponentsfrom transcrypto import modmath
# Solve:
# x ≡ 2 (mod 3)
# x ≡ 3 (mod 5)
x = modmath.CRTPair(2, 3, 3, 5)
print(x) # 8
assert x % 3 == 2
assert x % 5 == 3Solves a system of two simultaneous congruences with pairwise co-prime moduli, returning the least non-negative solution x such that:
x ≡ a1 (mod m1)
x ≡ a2 (mod m2)
0 ≤ x < m1 * m2
- Requirements:
m1 ≥ 2,m2 ≥ 2,m1 != m2gcd(m1, m2) == 1(co-prime)
- Errors:
- invalid modulus values →
InputError - non co-prime moduli →
ModularDivideError
- invalid modulus values →
This function is a 2-modulus variant; for multiple moduli, apply it iteratively or use a general CRT solver.
# f(t) = 7t³ − 3t² + 2t + 5 (coefficients constant-term first)
coefficients = [5, 2, -3, 7]
print(modmath.ModPolynomial(11, coefficients, 97)) # → 19
# Given three points build the degree-≤2 polynomial and evaluate it.
pts = {2: 4, 5: 3, 7: 1}
print(modmath.ModLagrangeInterpolate(9, pts, 11)) # → 2modmath.IsPrime(2**127 - 1) # True (Mersenne prime)
modmath.IsPrime(3825123056546413051) # False (strong pseudo-prime)
# Direct Miller–Rabin with custom witnesses
modmath.MillerRabinIsPrime(961748941, witnesses={2,7,61})
# Infinite iterator of primes ≥ 10⁶
for p in modmath.PrimeGenerator(1_000_000):
print(p)
if p > 1_000_100:
break
# Secure random 384-bit prime (for RSA/ECC experiments)
p384 = modmath.NBitRandomPrimes(384).pop()
for k, m_p, perfect in modmath.MersennePrimesGenerator(0):
print(f'p = {k:>8} M = {m_p} perfect = {perfect}')
if k > 10000: # stop after a few
breakSimple, fixed-output-size wrappers over Python’s hashlib for common digest operations, plus file hashing.
from transcrypto import baseh = base.Hash256(b'hello world')
assert len(h) == 32 # bytes
print(h.hex()) # 64 hex charsComputes the SHA-256 digest of a byte string, returning exactly 32 bytes (256 bits). Suitable for fingerprints, commitments, or internal crypto primitives.
h = base.Hash512(b'hello world')
assert len(h) == 64 # bytes
print(h.hex()) # 128 hex charsComputes the SHA-512 digest of a byte string, returning exactly 64 bytes (512 bits). Higher collision resistance and larger output space than SHA-256.
# Default SHA-256
fh = base.FileHash('/path/to/file')
print(fh.hex())
# SHA-512
fh2 = base.FileHash('/path/to/file', digest='sha512')Hashes a file from disk in streaming mode. By default uses SHA-256; digest='sha512' switches to SHA-512.
- constraints:
digestmust be'sha256'or'sha512'full_pathmust exist
- errors: invalid digest or missing file →
InputError
SymmetricCrypto is an abstract base class that defines the byte-in / byte-out contract for symmetric ciphers.
- Metadata handling — if the algorithm uses a
nonceortag, the implementation must handle it internally (e.g., append it to ciphertext). - AEAD modes — if supported,
associated_datamust be authenticated; otherwise, a non-Nonevalue should raiseInputError.
class MyAES(base.SymmetricCrypto):
def Encrypt(self, plaintext: bytes, *, associated_data=None) -> bytes:
...
def Decrypt(self, ciphertext: bytes, *, associated_data=None) -> bytes:
...Cryptographic objects all derive from the CryptoKey class and will all have some important characteristics:
- Will be safe to log and print, i.e., implement safe
__str__()and__repr__()methods (in actualityreprwill be exactly the same asstr). The__str__()should always fully print the public parts of the object and obfuscate the private ones. This obfuscation allows for some debugging, if needed, but if the secrets are "too short" then it can be defeated by brute force. For usual crypto defaults the obfuscation is fine. The obfuscation is the fist 4 bytes of the SHA-512 for the value followed by an ellipsis (e.g.c9626f16…). - It will have a
_DebugDump()method that does print secrets and can be used for debugging only. - Can be easily serialized to
bytesby theblobproperty and to base-64 encodedstrby theencodedproperty. - Can be serialized encrypted to
bytesby theBlob(key=[SymmetricCrypto])method and to encrypted base-64 encodedstrby theEncoded(key=[SymmetricCrypto])method. - Can be instantiated back as an object from
strorbytesusing theLoad(data, key=[SymmetricCrypto] | None)method. TheLoad()will decide how to build the object and will work universally with all the serialization options discussed above.
Example:
from transcrypto import base, rsa, aes
priv = rsa.RSAPrivateKey.New(512) # small key, but good for this example
print(str(priv)) # safe, no secrets
# ▶ RSAPrivateKey(RSAPublicKey(public_modulus=pQaoxy-QeXSds1k9WsGjJw==, encrypt_exp=AQAB), modulus_p=f18141aa…, modulus_q=67494eb9…, decrypt_exp=c96db24a…)
print(priv._DebugDump()) # UNSAFE: prints secrets
# ▶ RSAPrivateKey(public_modulus=219357196311600536151291741191131996967, encrypt_exp=65537, modulus_p=13221374197986739361, modulus_q=16591104148992527047, decrypt_exp=37805202135275158391322585315542443073, remainder_p=9522084656682089473, remainder_q=8975656462800098363, q_inverse_p=11965562396596149292)
print(priv.blob)
# ▶ b"(\xb5/\xfd \x98\xc1\x04\x00\x80\x04\x95\x8d\x00\x00\x00\x00\x00\x00\x00\x8c\x0ftranscrypto.rsa\x94\x8c\rRSAPrivateKey\x94\x93\x94)\x81\x94]\x94(\x8a\x11'\xa3\xc1Z=Y\xb3\x9dty\x90/\xc7\xa8\x06\xa5\x00J\x01\x00\x01\x00\x8a\t\xa1\xc4\x83\x81\xc8\xc1{\xb7\x00\x8a\t\xc7\x8a5\xf0Qq?\xe6\x00\x8a\x10A$&\x82!\x1cy\x89r\xef\xeb\xa7_\x04q\x1c\x8a\t\x01\xbc\xbb\x8a\x8b=%\x84\x00\x8a\x08;\x94#s\xff\xef\x8f|\x8a\t,\x9c\xe2z\x9a7\x0e\xa6\x00eb."
print(priv.encoded)
# ▶ KLUv_WBwAIELAIAElWUBAAAAAAAAjA90cmFuc2NyeXB0by5yc2GUjA1SU0FQcml2YXRlS2V5lJOUKYGUXZQoikHf1EvsmZedAZve7TrLmobLAwuRIr_77TLG6G_0fsLGThERVJu075be8PLjUQYnLXcacZFQ5Fb1Iy1WtiE985euAEoBAAEAiiFR9ngiXMzkf41o5CRBY3h0D4DJVisDDhLmAWsiaHggzQCKIS_cmQ6MKXCtROtC7c_Mrsi9A-9NM8DksaHaRwvy6uTZAIpB4TVbsLxc41TEc19wIzpxbi9y5dW5gdfTkRQSSiz0ijmb8Xk3pyBfKAv8JbHp8Yv48gNZUfX67qq0J7yhJqeUoACKIbFb2kTNRzSqm3JRtjc2BPS-FnLFdadlFcV4-6IW7eqLAIogFZfzDN39gZLR9uTz4KHSTaqxWrJgP8-YYssjss6FlFKKIIItgCDv7ompNpY8gBs5bibN8XTsr-JOYSntDVT5Fe5vZWIu
key = aes.AESKey(key256=b'x' * 32)
print(key)
# ▶ AESKey(key256=86a86df7…)
encrypted = priv.Blob(key=key)
print(priv == rsa.RSAPrivateKey.Load(encrypted, key=key))
# ▶ TrueImplements AES-256 in GCM mode for authenticated encryption and decryption, plus an ECB mode helper for fixed-size block encoding. Also includes a high-iteration PBKDF2-based key derivation from static passwords.
from transcrypto import aes
# From raw bytes (must be exactly 32 bytes)
key = aes.AESKey(key256=b'\x00' * 32)
# From a static password (slow, high-iteration PBKDF2-SHA256)
key = aes.AESKey.FromStaticPassword('correct horse battery staple')
print(key.encoded) # URL-safe Base64- Length:
key256must be exactly 32 bytes FromStaticPassword():- Uses PBKDF2-HMAC-SHA256 with fixed salt and ~2 million iterations
- Designed for interactive password entry, not for password databases
data = b'secret message'
aad = b'metadata'
# Encrypt (returns IV + ciphertext + tag)
ct = key.Encrypt(data, associated_data=aad)
# Decrypt
pt = key.Decrypt(ct, associated_data=aad)
assert pt == data- Security:
- Random 128-bit IV (
iv) per encryption - Authenticated tag (128-bit) ensures integrity
- Optional
associated_datais authenticated but not encrypted
- Random 128-bit IV (
- Errors:
- Tag mismatch or wrong key →
CryptoError
- Tag mismatch or wrong key →
# ECB mode is for 16-byte block encoding ONLY
ecb = key.ECBEncoder()
block = b'16-byte string!!'
ct_block = ecb.Encrypt(block)
pt_block = ecb.Decrypt(ct_block)
assert pt_block == block
# Hex helpers
hex_ct = ecb.EncryptHex('00112233445566778899aabbccddeeff')- ECB mode:
- 16-byte plaintext ↔ 16-byte ciphertext
- No padding, no IV, no integrity — do not use for general encryption
associated_datanot supported
Key points:
- GCM mode is secure for general use; ECB mode is for special low-level operations
- Static password derivation is intentionally slow to resist brute force
- All sizes and parameters are validated with
InputErroron misuse
https://en.wikipedia.org/wiki/RSA_cryptosystem
This implementation is raw RSA, no OAEP or PSS! It works on the actual integers. For real uses you should look for higher-level implementations.
By default and deliberate choice the encryption exponent will be either 7 or 65537, depending on the size of phi=(p-1)*(q-1). If phi allows it the larger one will be chosen to avoid Coppersmith attacks.
from transcrypto import rsa
# Generate a key pair
priv = rsa.RSAPrivateKey.New(2048) # 2048-bit modulus
pub = rsa.RSAPublicKey.Copy(priv) # public half
print(priv.public_modulus.bit_length()) # 2048
# Safe Encrypt & decrypt
msg = b'xyz'
cipher = pub.Encrypt(msg, associated_data=b'aad')
plain = priv.Decrypt(cipher, associated_data=b'aad')
assert plain == msg
# Safe Sign & verify
signature = priv.Sign(msg) # can also have associated_data, optionally
assert pub.Verify(msg, signature)
# Raw Encrypt & decrypt
msg = 123456789 # (Zero is forbidden by design; smallest valid message is 1.)
cipher = pub.RawEncrypt(msg)
plain = priv.RawDecrypt(cipher)
assert plain == msg
# Raw Sign & verify
signature = priv.RawSign(msg)
assert pub.RawVerify(msg, signature)
# Blind signatures (obfuscation pair) - only works on raw RSA
pair = rsa.RSAObfuscationPair.New(pub)
blind_msg = pair.ObfuscateMessage(msg) # what you send to signer
blind_sig = priv.RawSign(blind_msg) # signer’s output
sig = pair.RevealOriginalSignature(msg, blind_sig)
assert pub.RawVerify(msg, sig)https://en.wikipedia.org/wiki/ElGamal_encryption
This is raw El-Gamal over a prime field — no padding, no hashing — and is not DSA. For real-world deployments, use a high-level library with authenticated encryption and proper encoding.
from transcrypto import elgamal
# Shared parameters (prime modulus, group base) for a group
shared = elgamal.ElGamalSharedPublicKey.New(256)
print(shared.prime_modulus)
print(shared.group_base)
# Public key from private
priv = elgamal.ElGamalPrivateKey.New(shared)
pub = elgamal.ElGamalPublicKey.Copy(priv)
# Safe Encrypt & decrypt
msg = b'xyz'
cipher = pub.Encrypt(msg, associated_data=b'aad')
plain = priv.Decrypt(cipher, associated_data=b'aad')
assert plain == msg
# Safe Sign & verify
signature = priv.Sign(msg) # can also have associated_data, optionally
assert pub.Verify(msg, signature)
# Raw Encryption
msg = 42
cipher = pub.RawEncrypt(msg)
plain = priv.RawDecrypt(cipher)
assert plain == msg
# Raw Signature verify
sig = priv.RawSign(msg)
assert pub.RawVerify(msg, sig)Key points:
- Security parameters:
- Recommended
prime_modulusbit length ≥ 2048 for real security - Random values from
base.RandBits
- Recommended
- Ephemeral keys:
- Fresh per encryption/signature
- Must satisfy
gcd(k, p-1) == 1
- Errors:
- Bad ranges →
InputError - Invalid math relationships →
CryptoError
- Bad ranges →
- Group sharing:
- Multiple parties can share
(p, g)but have different(individual_base, decrypt_exp)
- Multiple parties can share
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
This is raw DSA over a prime field — no hashing or padding. You sign/verify integers modulo q (prime_seed). For real use, hash the message first (e.g., SHA-256) and then map to an integer < q.
from transcrypto import dsa
# Shared parameters (p, q, g)
shared = dsa.DSASharedPublicKey.New(p_bits=1024, q_bits=160)
print(shared.prime_modulus) # p
print(shared.prime_seed) # q (q | p-1)
print(shared.group_base) # g
# Individual key pair
priv = dsa.DSAPrivateKey.New(shared)
pub = dsa.DSAPublicKey.Copy(priv)
# Safe Sign & verify
msg = b'xyz'
signature = priv.Sign(msg) # can also have associated_data, optionally
assert pub.Verify(msg, signature)
# Raw Sign & verify (message must be 1 ≤ m < q)
msg = 123456789 % shared.prime_seed
sig = priv.RawSign(msg)
assert pub.RawVerify(msg, sig)- ranges:
1 ≤ message < q- signatures:
(s1, s2)with2 ≤ s1, s2 < q
- errors:
- invalid ranges →
InputError - inconsistent parameters →
CryptoError
- invalid ranges →
- Choose large parameters (e.g.,
p ≥ 2048 bits,q ≥ 224 bits) for non-toy settings. - In practice, compute
m = int.from_bytes(Hash(message), 'big') % qbefore callingSign(m).
# Generate primes (p, q) with q | (p-1); also returns m = (p-1)//q
p, q, m = dsa.NBitRandomDSAPrimes(p_bits=1024, q_bits=160)
assert (p - 1) % q == 0Used internally by DSASharedPublicKey.New().
Search breadth and retry caps are bounded; repeated failures raise CryptoError.
This is a way of bidding on some commitment (the secret) that can be cryptographically proved later to not have been changed. To do that the secret is combined with 2 nonces (random values, n1 & n2) and a hash of it is taken (H=SHA-512(n1||n2||secret)). The hash H and one nonce n1 are public and divulged. The other nonce n2 and the secret are kept private and will be used to show secret was not changed since the beginning of the process. The nonces guarantee the secret cannot be brute-forced or changed after-the-fact. The whole process is as strong as SHA-512 collisions.
from transcrypto import base
# Generate the private and public bids
bid_priv = base.PrivateBid512.New(secret) # this one you keep private
bid_pub = base.PublicBid512.Copy(bid_priv) # this one you publish
# Checking that a bid is genuine requires the public bid and knowing the nonce and the secret:
print(bid_pub.VerifyBid(private_key, secret_bid)) # these come from a divulged private bid
# of course, you want to also make sure the provided private data matches your version of it, e.g.:
bid_pub_expected = base.PublicBid512.Copy(bid_priv)
print(bid_pub == bid_pub_expected)https://en.wikipedia.org/wiki/Shamir's_secret_sharing
This is the information-theoretic SSS but with no authentication or binding between share and secret. Malicious share injection is possible! Add MAC or digital signature in hostile settings. Use at least 128-bit modulus for non-toy deployments.
from transcrypto import sss
# Generate parameters: at least 3 of 5 shares needed,
# coefficients & modulus are 128-bit primes
priv = sss.ShamirSharedSecretPrivate.New(minimum_shares=3, bit_length=128)
pub = sss.ShamirSharedSecretPublic.Copy(priv) # what you publish
print(f'threshold : {pub.minimum}')
print(f'prime mod : {pub.modulus}')
print(f'poly coefficients: {priv.polynomial}') # keep these private!
# Safe Issuing shares
secret = b'xyz'
# Generate 5 shares, each has a copy of the encrypted secret
five_shares = priv.MakeDataShares(secret, 5)
for sh in five_shares:
print(sh)
# Raw Issuing shares
secret = 0xC0FFEE
# Generate an unlimited stream; here we take 5
five_shares = list(priv.RawShares(secret, max_shares=5))
for sh in five_shares:
print(f'share {sh.share_key} → {sh.share_value}')A single share object looks like sss.ShamirSharePrivate(minimum=3, modulus=..., share_key=42, share_value=123456789).
# Safe Re-constructing the secret
secret = b'xyz'
five_shares = priv.MakeDataShares(secret, 5)
subset = five_shares[:3] # any 3 distinct shares
recovered = subset[0].RecoverData(subset) # each share has the encrypted data, so you ask it to join with the others
assert recovered == secret
# Raw Re-constructing the secret
secret = 0xC0FFEE
five_shares = list(priv.RawShares(secret, max_shares=5))
subset = five_shares[:3] # any 3 distinct shares
recovered = pub.RawRecoverSecret(subset)
assert recovered == secretIf you supply fewer than minimum shares you get a CryptoError, unless you explicitly override:
try:
pub.RawRecoverSecret(five_shares[:2]) # raises
except Exception as e:
print(e) # "unrecoverable secret …"
# Force the interpolation even with 2 points (gives a wrong secret, of course)
print(pub.RawRecoverSecret(five_shares[:2], force_recover=True))
# Checking that a share is genuine
share = five_shares[0]
ok = priv.RawVerifyShare(secret, share) # ▶ True
tampered = sss.ShamirSharePrivate(
minimum=share.minimum,
modulus=share.modulus,
share_key=share.share_key,
share_value=(share.share_value + 1) % share.modulus)
print(priv.RawVerifyShare(secret, tampered)) # ▶ FalseIf you want to develop for this project, first install python 3.13 and Poetry, but to get the versions you will need, we suggest you do it like this (Linux):
sudo apt-get update
sudo apt-get upgrade
sudo apt-get install git python3 python3-pip pipx python3-dev python3-venv build-essential software-properties-common
sudo add-apt-repository ppa:deadsnakes/ppa # install arbitrary python version
sudo apt-get update
sudo apt-get install python3.13
sudo apt-get remove python3-poetry
python3.13 -m pipx ensurepath
# re-open terminal
pipx install poetry
poetry --version # should be >=2.1
poetry config virtualenvs.in-project true # creates .venv inside project directory
poetry config pypi-token.pypi <TOKEN> # add your personal PyPI project token, if anyor this (Mac):
brew update
brew upgrade
brew cleanup -s
brew install git python@3.13 # install arbitrary python version
brew uninstall poetry
python3.13 -m pip install --user pipx
python3.13 -m pipx ensurepath
# re-open terminal
pipx install poetry
poetry --version # should be >=2.1
poetry config virtualenvs.in-project true # creates .venv inside project directory
poetry config pypi-token.pypi <TOKEN> # add your personal PyPI project token, if anyNow install the project:
git clone https://github.com/balparda/transcrypto.git transcrypto
cd transcrypto
poetry env use python3.13 # creates the venv
poetry install --sync # HONOR the project's poetry.lock file, uninstalls stray packages
poetry env info # no-op: just to check
poetry run pytest -vvv
# or any command as:
poetry run <any-command>To activate like a regular environment do:
poetry env activate
# will print activation command which you next execute, or you can do:
source .venv/bin/activate # if .venv is local to the project
source "$(poetry env info --path)/bin/activate" # for other paths
pytest # or other commands
deactivateTo update poetry.lock file to more current versions do poetry update, it will ignore the current lock, update, and rewrite the poetry.lock file.
To add a new dependency you should do:
poetry add "pkg>=1.2.3" # regenerates lock, updates env (adds dep to prod code)
poetry add -G dev "pkg>=1.2.3" # adds dep to dev code ("group" dev)
# also remember: "pkg@^1.2.3" = latest 1.* ; "pkg@~1.2.3" = latest 1.2.* ; "pkg@1.2.3" exactIf you manually added a dependency to pyproject.toml you should very carefully recreate the environment and files:
rm -rf .venv .poetry poetry.lock
poetry env use python3.13
poetry installRemember to check your diffs before submitting (especially poetry.lock) to avoid surprises!
When dependencies change, always regenerate requirements.txt by running:
poetry export --format requirements.txt --without-hashes --output requirements.txt# bump the version!
poetry version minor # updates 1.6 to 1.7, for example
# or:
poetry version patch # updates 1.6 to 1.6.1
# or:
poetry version <version-number>
# (also updates `pyproject.toml` and `poetry.lock`)
# publish to GIT, including a TAG
git commit -a -m "release version 1.0.2"
git tag 1.0.2
git push
git push --tags
# prepare package for PyPI
poetry build
poetry publishIf you changed the CLI interface at all, in any tool, run:
./tools/generate_docs.shYou can find the 10 top slowest tests by running:
poetry run pytest -vvv -q --durations=30
poetry run pytest -vvv -q --durations=30 -m "not slow" # find slow > 0.1s
poetry run pytest -vvv -q --durations=30 -m "not veryslow" # find veryslow > 1s
poetry run pytest -vvv -q --durations=30 -m slow # check
poetry run pytest -vvv -q --durations=30 -m veryslow # checkYou can search for flaky tests by running all tests 100 times, or more:
poetry run pytest --flake-finder --flake-runs=100
poetry run pytest --flake-finder --flake-runs=500 -m "not veryslow"
poetry run pytest --flake-finder --flake-runs=10000 -m "not slow"You can instrument your code to find bottlenecks:
$ source .venv/bin/activate
$ which transcrypto
/path/to/.venv/bin/transcrypto # place this in the command below:
$ pyinstrument -r html -o dsa_shared.html -- /path/to/.venv/bin/transcrypto -p rsa-key rsa new
$ deactivateHint: 85%+ is inside MillerRabinIsPrime()/gmpy2.powmod()...