Short description: A machine learning project to classify Iris flower species (Iris-setosa, Iris-versicolor, and Iris-virginica) using [your chosen language or framework, e.g., Python & scikit-learn].
- Project Overview
- Dataset
- Installation
- Usage
- Project Structure
- Model Training & Evaluation
- Results
- Technologies Used
- Future Work
- Contributing
- License
Provide a high-level summary of why this project exists and what it does. E.g.:
This project implements a classification pipeline for the classic Iris dataset, training a model to predict the iris species based on sepal and petal measurements.
Explain the dataset details:
- Source: Iris dataset from UCI Machine Learning Repository (or loaded via
scikit-learn.datasets.load_iris) :contentReference[oaicite:0]{index=0}. - Samples: 150 total, evenly distributed among three species (Setosa, Versicolor, Virginica) :contentReference[oaicite:1]{index=1}.
- Features: Sepal length, sepal width, petal length, petal width—all in centimeters :contentReference[oaicite:2]{index=2}.
Include setup steps:
git clone https://github.com/arpitaapatel/Iris-Classification.git
cd Iris-Classification
python3 -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
Model Training & Evaluation
Summarize your modeling process:
Splitting dataset (e.g., 80% train, 20% test)
Feature scaling or encoding (if done)
Models tried: logistic regression, KNN, decision tree, Naive Bayes, Random Forest (common for Iris projects)
upGrad
DataFlair
Medium
.
Evaluation metrics: accuracy, classification report, confusion matrix, recall, precision, F1-score
Medium
Medium
.