Skip to content

Forensic Audio Classifier Tool is an ML-based digital forensics system built using PyTorch, Transformers, and a custom hybrid pipeline (Acoustic Model + Language Model + Classifier). It is designed for the Tripura Bengali dialect, enabling accurate transcription, keyword detection, and automated (Flagged / Review / Safe) audio classification.

License

Notifications You must be signed in to change notification settings

arnab-glitch/Forensic-Audio-Classifier-Tool-Bengali

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🛡️ Forensic Audio Classifier Tool

Hybrid AM + LM + Classifier Based Crime Speech Detection System
Optimized for Tripura Bengali Dialect


👤 Developer Information

Developer: Arnab Das
Institute: NFSU Tripura Campus
Year: 2025

📌 Overview

The Forensic Audio Classifier Tool is a machine-learning based forensic audio analysis system designed to transcribe, analyze, and classify speech content in Tripura’s Bengali dialect, influenced by:

  • Comilla
  • Dhaka
  • Noakhali
  • Sylhet
  • Bengali (West Bengal)

The tool automatically categorizes audio evidence into:

  • 🚨 Flagged — Crime-related audio
  • 🧐 Review — Ambiguous or partially suspicious
  • Safe — Harmless speech

⚙️ System Capabilities

This tool integrates multiple forensic speech-processing components:

  • Acoustic Model: Wav2Vec2-BERT (Bangla ASR)
  • Language Model: 3-gram KenLM (Tripura Bengali Corpus)
  • Classifier Model: Fine-tuned Crime vs. Non-Crime Transformer
  • Keyword Engine: Weighted, fuzzy matching & severity scoring
  • Decision Logic: Hybrid probability + rule-based detection
  • Pre-processing: Silence trimming & audio normalization
  • Output Formats: HTML & CSV forensic reports
  • Audio Segregation: Flagged / Review / Safe evidence folders

🧠 System Architecture

The complete forensic processing workflow consists of:

  • Audio Input
  • Acoustic Model (Wav2Vec2-BERT)
  • Language Model (3-gram KenLM)
  • Transcription Generation
  • Keyword Detection Engine
  • Crime Classification Model
  • Hybrid Decision Logic
  • Safe / Review / Flagged Categorization
  • HTML & CSV Report Generation

📦 Components

🔊 Acoustic Model (Wav2Vec2-BERT)


📝 3-Gram Language Model (KenLM)

  • Developed by: Arnab Das
  • Corpus: Custom Tripura-Bengali dataset
  • Purpose: Improve decoding accuracy & dialect handling

🔍 Crime Classifier Model

  • Model Type: Transformer-based text classifier
  • Labels: Crime / Non-Crime
  • Fine-tuned by: Arnab Das
  • Base Model: Deleted by original author (self-maintained)

📁 Folder Structure

Forensic-Audio-Classifier-Tool/
│
├── tool.py
├── config.json
├── requirements.txt
├── README.md
│
├── models/
│   ├── language_model/
│   │     ├── lm.arpa
│   │     └── unigrams.txt
│   └── classifier_model/
│
├── keywords/
│   ├── critical.csv
│   ├── high.csv
│   ├── medium.csv
│   ├── low.csv
│   └── context_tokens.csv
│
└── sample_outputs/
      ├── report_example.html
      └── report_example.csv

🚀 How to Run

Follow the steps below to execute the forensic analysis tool:


1️⃣ Install Dependencies

pip install -r requirements.txt

2️⃣ Place Your Audio Files

mkdir audios
# place your .wav/.mp3/.opus files in this folder

3️⃣ Run the Forensic Tool

python tool.py

4️⃣ Generated Outputs

📄 Reports

crime_detection_report_<timestamp>.html
crime_detection_report_<timestamp>.csv

📂 Segregated Audio Folders

flagged_audio/
review_audio/
safe_audio/

📚 Citation (APA)

Arnab Das, Forensic Audio Classifier Tool (v0.9): Hybrid AM + LM + Classifier System for Crime-Related Speech Detection in Tripura Bengali, Technical Report, National Forensic Sciences University (NFSU), Tripura Campus, 2025.


👨‍💻 Author

  • Name: Arnab Das
  • Field: Forensic Audio Research & Development
  • Institute: NFSU Tripura Campus (2025)

About

Forensic Audio Classifier Tool is an ML-based digital forensics system built using PyTorch, Transformers, and a custom hybrid pipeline (Acoustic Model + Language Model + Classifier). It is designed for the Tripura Bengali dialect, enabling accurate transcription, keyword detection, and automated (Flagged / Review / Safe) audio classification.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages