Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
101 changes: 101 additions & 0 deletions examples/singa_peft/examples/model/lsgan_mlp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#

from singa import layer
from singa import model
from singa import autograd


class LSGAN_MLP(model.Model):

def __init__(self, noise_size=100, feature_size=784, hidden_size=128):
super(LSGAN_MLP, self).__init__()
self.noise_size = noise_size
self.feature_size = feature_size
self.hidden_size = hidden_size

# Generative Net
self.gen_net_fc_0 = layer.Linear(self.hidden_size)
self.gen_net_relu_0 = layer.ReLU()
self.gen_net_fc_1 = layer.Linear(self.feature_size)
self.gen_net_sigmoid_1 = layer.Sigmoid()

# Discriminative Net
self.dis_net_fc_0 = layer.Linear(self.hidden_size)
self.dis_net_relu_0 = layer.ReLU()
self.dis_net_fc_1 = layer.Linear(1)
self.mse_loss = layer.MeanSquareError()

def forward(self, x):
# Cascaded Net
y = self.forward_gen(x)
y = self.forward_dis(y)
return y

def forward_dis(self, x):
# Discriminative Net
y = self.dis_net_fc_0(x)
y = self.dis_net_relu_0(y)
y = self.dis_net_fc_1(y)
return y

def forward_gen(self, x):
# Generative Net
y = self.gen_net_fc_0(x)
y = self.gen_net_relu_0(y)
y = self.gen_net_fc_1(y)
y = self.gen_net_sigmoid_1(y)
return y

def train_one_batch(self, x, y):
# Training the Generative Net
out = self.forward(x)
loss = self.mse_loss(out, y)
# Only update the Generative Net
for p, g in autograd.backward(loss):
if "gen_net" in p.name:
self.optimizer.apply(p.name, p, g)
return out, loss

def train_one_batch_dis(self, x, y):
# Training the Discriminative Net
out = self.forward_dis(x)
loss = self.mse_loss(out, y)
# Only update the Discriminative Net
for p, g in autograd.backward(loss):
if "dis_net" in p.name:
self.optimizer.apply(p.name, p, g)
return out, loss

def set_optimizer(self, optimizer):
self.optimizer = optimizer


def create_model(pretrained=False, **kwargs):
"""Construct a CNN model.

Args:
pretrained (bool): If True, returns a model pre-trained
"""
model = LSGAN_MLP(**kwargs)

return model


__all__ = ['LSGAN_MLP', 'create_model']
Loading