This repository contains the complete BALLU (Buoyancy-Assisted Legged Locomotion Unit) robot research project, which integrates Isaac Lab extensions for morphology optimization and locomotion training using reinforcement learning.
The BALLU project is focused on optimizing the morphology of the BALLU robot to achieve stable and dynamic locomotion.
BALLU_Project/
├── ballu_isclb_extension/ # Main Isaac Lab extension
│ ├── source/ballu_isaac_extension/ # Extension source code
│ ├── scripts/ # Training and visualization scripts
│ └── config/ # Extension configuration
├── isaac_lab/ # Isaac Lab submodule (forked)
├── rsl_rl_lib/ # RSL-RL submodule (forked)
└── .gitmodules # Git submodule configuration
- Python 3.10
- NVIDIA Isaac Sim 4.5.0
Since this project uses git submodules, you need to clone with special flags:
# Method 1: Clone with submodules (recommended)
git clone --recurse-submodules <repository_url> BALLU_Project
cd BALLU_Project
# Method 2: If already cloned without submodules
git clone <repository_url> BALLU_Project
cd BALLU_Project
git submodule init
git submodule update --recursive
# Method 3: Update existing clone
git submodule update --init --recursiveCheck that all submodules are properly initialized:
git submodule statusYou should see both isaac_lab and rsl_rl_lib submodules listed as initialized.
WIP
cd ballu_isclb_extension
python scripts/rsl_rl/train.py --task Isc-Vel-BALLU-encoder --num_envs 16 --seed 0 --max_iterations 2000cd ballu_isclb_extension
python scripts/rsl_rl/play.py --task Isc-Vel-BALLU-encoder --load_run <run_name> --checkpoint <model_name> --num_envs 4 --videoThe BALLU (Buoyancy-Assisted Legged Locomotion Unit) robot represents an innovative approach to legged locomotion that leverages buoyancy assistance for enhanced stability and efficiency. This research project focuses on:
- Morphology Optimization: Systematically testing different robot configurations to find optimal designs
- Sensor Integration: Implementing various sensor suites (IMUs, cameras) for state estimation
- Reinforcement Learning: Training robust locomotion policies using PPO algorithm
- Real-world Transfer: Bridging the simulation-to-reality gap for physical robot deployment
This project is part of the BALLU robot research initiative. Please refer to individual submodule repositories for specific licensing information.