HealthVerse : AI Health Companion with multi-disease prediction(11 diseases), nutrition guidance, and symptom checking and precautions
โ ๏ธ RETRO THEME ACTIVATED
Experience the nostalgia of retro UI with our pixel-perfect health companion!
Retro-Themed AI-Powered Health Companion
๐ก Our Promise: We don't replace doctorsโwe empower you with knowledge and bridge the gap between medical tests and understanding.
An all-in-one health analysis platform offering multi-disease prediction (11+ conditions), personalized nutrition guidance, and symptom checking with precautionary insights for over 60 diseases.
In a world where medical expertise isn't always accessible, HealthVerse emerges as your intelligent health companion. While medical tests provide raw data, they don't always translate to clear understanding or action. That's where we step in.
Medical tests give you numbers; we give you context. Our AI doesn't just read valuesโit understands patterns across multiple health indicators to provide meaningful insights about your health status.
We don't just look at one number in isolation. Our models analyze multiple parameters simultaneously to detect early warning signs that might be missed when looking at individual test results.
- For Everyone: No medical degree needed to understand your health status
- 24/7 Access: Get insights anytime, anywhere
- Multi-Disease Coverage: From diabetes to depression, we've got you covered
- Early detection of potential health issues
- Clear explanations of what your symptoms might mean
- Actionable health recommendations
- Supports healthcare workers in resource-limited settings
- Reduces unnecessary hospital visits
- Promotes preventive healthcare awareness
Our specialized models provide insights into:
- Chronic Conditions: Diabetes, Heart Disease, Hypertension
- Organ Health: Liver Disease, Kidney Disease
- Mental Health: Depression
- Metabolic Disorders: Thyroid Conditions, Anemia
- Neurological: Alzheimer's Disease
- Life-Threatening: Stroke, Breast Cancer
- Infectious Diseases: Dengue
Each disease prediction model is trained using its own dedicated script for optimal performance. All models use scikit-learn's RandomForestClassifier with appropriate hyperparameters.
| Disease | Model Type | Accuracy | Training Script |
|---|---|---|---|
| Alzheimer's Disease | Random Forest | ~95% | train_alzheimer.py |
| Anemia | Random Forest | ~95% | train_anemia.py |
| Breast Cancer | Random Forest | ~96% | train_breast_cancer.py |
| Depression | Random Forest | ~89% | train_depression_model.py |
| Diabetes | Random Forest | ~93% | train_diabetes.py |
| Heart Disease | Random Forest | ~97% | train_heart.py |
| Kidney Disease | Random Forest | ~94% | train_kidney.py |
| Liver Disease | Random Forest | ~96% | train_liver.py |
| Stroke | Random Forest | ~95% | train_stroke.py |
| Thyroid | Random Forest | ~98% | train_thyroid.py |
| Dengue | In Progress | ~95% | train_dengue.py |
Note: Accuracies are approximate and based on test set performance. Actual performance may vary with different data distributions.
- Real-time Analysis: Get instant predictions with detailed results
- Model Transparency: View confidence scores and contributing factors
- Nutri-Bot: Personalized nutrition and diet recommendations
- Symptom Checker: AI-powered preliminary health assessment
- Mobile-First Design: Works seamlessly on all devices
- Interactive Elements: Smooth animations and transitions
- Collapsible Sidebar: Optimized screen space usage
- Accessibility: Keyboard navigation and screen reader support
- Disease Information: Detailed descriptions and risk factors
- Prevention Tips: Evidence-based health recommendations
- First Aid Guidance: Quick reference for emergencies
- Pixel-Perfect Design: Nostalgic pixel art interface with smooth animations
- Responsive Layout: Works on all devices from retro to modern
- Dark Mode: Eye-friendly interface for extended use
- HTML5 & CSS3 with Tailwind CSS
- Vanilla JavaScript for interactivity
- Responsive Design with mobile-first approach
- Pixel Font for consistent typography
- Netlify Functions for serverless API endpoints
- Python 3.8+ for machine learning models and data processing
- Node.js 16+ for server-side logic
- scikit-learn for all machine learning models (Random Forest)**
- Pandas & NumPy for data processing and manipulation
- Joblib for model serialization and loading
- StandardScaler for feature scaling
- LabelEncoder for categorical variable encoding
- Gemini Flash 2.0 for chat-based assistance
- Multi-turn dialogue support
- Git for version control
- Netlify CLI for local development
- Visual Studio Code
DISEASEXYZ/
โโโ data/ # Raw and processed datasets
โ โโโ raw/ # Original CSV files from various sources
โ โ โโโ alzheimers_disease_data.csv
โ โ โโโ Anaemia.csv
โ โ โโโ Breast Cancer.csv
โ โ โโโ Dengue diseases dataset.csv
โ โ โโโ healthcare-dataset-stroke-data.csv
โ โ โโโ indian_liver_patient.csv
โ โ โโโ kidney_disease.csv
โ โ โโโ new-thyroid.csv
โ โ โโโ Student Depression Dataset.csv
โ โโโ cleaned/ # Preprocessed and cleaned datasets
โ
โโโ functions/ # Netlify Functions
โ โโโ utils/ # Utility functions
โ โ โโโ precautions.js # Disease precautions database
โ โโโ chat.js # Chat functionality with Gemini AI
โ โโโ predict.py # ML model prediction logic
โ
โโโ models/ # Trained ML models and scalers
โ โโโ alzheimers_model.pkl
โ โโโ alzheimers_scaler.pkl
โ โโโ anemia_model.pkl
โ โโโ anemia_scaler.pkl
โ โโโ breast_cancer_model.pkl
โ โโโ dengue_model.joblib
โ โโโ dengue_scaler.joblib
โ โโโ depression_model.pkl
โ โโโ depression_scaler.pkl
โ โโโ diabetes_model.pkl
โ โโโ diabetes_scaler.pkl
โ โโโ heart_model.pkl
โ โโโ heart_scaler.pkl
โ โโโ kidney_model.pkl
โ โโโ kidney_scaler.pkl
โ โโโ liver_model.pkl
โ โโโ liver_scaler.pkl
โ โโโ stroke_model.pkl
โ โโโ thyroid_model.pkl
โ
โโโ public/ # Static files
โ โโโ assets/ # Images and icons
โ โ โโโ alzheimer.jpg
โ โ โโโ anemia.jpg
โ โ โโโ breast_cancer.jpg
โ โ โโโ default.jpg
โ โ โโโ dengue.jpg
โ โ โโโ depression.jpg
โ โ โโโ diabetes.jpg
โ โ โโโ heart.jpg
โ โ โโโ kidney.jpg
โ โ โโโ liver.jpg
โ โ โโโ logo.png
โ โ โโโ stroke.jpg
โ โ โโโ thyroid.jpg
โ โโโ js/
โ โ โโโ app.js # Main application logic
โ โ โโโ chat.js # Chat interface logic
โ โโโ index.html # Main HTML file
โ
โโโ scripts/ # Data processing and model training
โ โโโ prepare.py # Data cleaning and preprocessing
โ โโโ train_alzheimer.py # Alzheimer's disease model training
โ โโโ train_anemia.py # Anemia model training
โ โโโ train_breast_cancer.py # Breast cancer model training
โ โโโ train_dengue.py # Dengue model training
โ โโโ train_depression_model.py # Depression model training
โ โโโ train_diabetes.py # Diabetes model training
โ โโโ train_heart.py # Heart disease model training
โ โโโ train_kidney.py # Kidney disease model training
โ โโโ train_liver.py # Liver disease model training
โ โโโ train_stroke.py # Stroke prediction model training
โ โโโ train_thyroid.py # Thyroid disease model training
โ
โโโ .gitignore # Git ignore file
โโโ netlify.toml # Netlify configuration
โโโ package.json # Node.js dependencies
โโโ requirements.txt # Python dependencies
โโโ README.md # This file
- Node.js 16+
- Python 3.8+
- Netlify CLI (for local development)
-
Clone the repository
git clone https://github.com/yourusername/healthverse.git cd healthverse -
Install Python dependencies
pip install -r requirements.txt
-
Install Node.js dependencies
npm install
-
Set up environment variables Create a
.envfile in the root directory:GEMINI_API_KEY=your_gemini_api_key
-
Run locally
netlify dev
The app will be available at
http://localhost:8888
Each disease model is trained using its own dedicated script for better maintainability and customization. Here's how to train the models:
Each model can be trained independently using its specific script:
# Navigate to the project root directory
cd path/to/HealthVerseAI
# Train Alzheimer's model
python train_alzheimer.py
# Train Anemia model
python train_anemia.py
# Train Breast Cancer model
python train_breast_cancer.py
# Train Depression model
python train_depression_model.py
# Train Diabetes model
python train_diabetes.py
# Train Heart Disease model
python train_heart.py
# Train Kidney Disease model
python train_kidney.py
# Train Liver Disease model
python train_liver.py
# Train Stroke model
python train_stroke.py
# Train Thyroid model
python train_thyroid.py- Each training script handles its own data preprocessing, model training, and evaluation
- Models are saved in the
models/directory - Training scripts output accuracy and classification reports
- Each script is self-contained with its own data loading and preprocessing logic
This project is licensed under the MIT License - see the LICENSE file for details.
Contributions are welcome! Please follow these steps:
- Fork the repository
- Create your feature branch (
git checkout -b feature/AmazingFeature) - Commit your changes (
git commit -m 'Add some AmazingFeature') - Push to the branch (
git push origin feature/AmazingFeature) - Open a Pull Request
- Expanded Disease Coverage: Add more disease prediction models
- Multi-language Support: Support for multiple languages
- Mobile App: Native mobile applications for iOS and Android
- Integration with Health Devices: Connect with wearables and health trackers
- Telemedicine Integration: Connect with healthcare providers
- Personal Health Dashboard: Track health metrics over time
Project Link:
https://github.com/ankan123basu/HealthVerseAI
GitHub Profiles:
Lovely Professional University