Skip to content

An all-in-one health analysis platform offering multi-disease prediction (11+ conditions), personalized nutrition guidance, and symptom checking with precautionary insights for over 60 diseases."

Notifications You must be signed in to change notification settings

ankan123basu/HealthVerse

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

13 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

HealthVerse : AI Health Companion with multi-disease prediction(11 diseases), nutrition guidance, and symptom checking and precautions

MIT License Python Node.js Netlify

โš ๏ธ RETRO THEME ACTIVATED
Experience the nostalgia of retro UI with our pixel-perfect health companion!

HealthVerse Banner Retro-Themed AI-Powered Health Companion

๐Ÿ’ก Our Promise: We don't replace doctorsโ€”we empower you with knowledge and bridge the gap between medical tests and understanding.

ML Frontend Backend

An all-in-one health analysis platform offering multi-disease prediction (11+ conditions), personalized nutrition guidance, and symptom checking with precautionary insights for over 60 diseases.

Screenshot 2025-07-29 005656 Screenshot 2025-07-29 011454 image image image Screenshot 2025-07-29 012510 Screenshot 2025-07-29 012519 Screenshot 2025-07-29 012549 Screenshot 2025-07-29 015129 Screenshot 2025-07-29 015142 Screenshot 2025-07-29 015154 Screenshot 2025-07-29 015206 Screenshot 2025-07-29 015255 image image image

๐ŸŽฏ Why HealthVerse? Bridging the Gap in Healthcare Access

In a world where medical expertise isn't always accessible, HealthVerse emerges as your intelligent health companion. While medical tests provide raw data, they don't always translate to clear understanding or action. That's where we step in.

๐Ÿค” Why Use HealthVerse When Tests Exist?

1. Beyond Binary Predictions

Medical tests give you numbers; we give you context. Our AI doesn't just read valuesโ€”it understands patterns across multiple health indicators to provide meaningful insights about your health status.

2. Comprehensive Health Analysis

We don't just look at one number in isolation. Our models analyze multiple parameters simultaneously to detect early warning signs that might be missed when looking at individual test results.

3. Democratizing Healthcare

  • For Everyone: No medical degree needed to understand your health status
  • 24/7 Access: Get insights anytime, anywhere
  • Multi-Disease Coverage: From diabetes to depression, we've got you covered

๐ŸŒ Real-World Impact

For Individuals

  • Early detection of potential health issues
  • Clear explanations of what your symptoms might mean
  • Actionable health recommendations

For Communities

  • Supports healthcare workers in resource-limited settings
  • Reduces unnecessary hospital visits
  • Promotes preventive healthcare awareness

๐Ÿฅ Our 11-Disease Coverage

Our specialized models provide insights into:

  • Chronic Conditions: Diabetes, Heart Disease, Hypertension
  • Organ Health: Liver Disease, Kidney Disease
  • Mental Health: Depression
  • Metabolic Disorders: Thyroid Conditions, Anemia
  • Neurological: Alzheimer's Disease
  • Life-Threatening: Stroke, Breast Cancer
  • Infectious Diseases: Dengue

๐ŸŽฎ Features

๐Ÿฉบ Disease Prediction Models

Each disease prediction model is trained using its own dedicated script for optimal performance. All models use scikit-learn's RandomForestClassifier with appropriate hyperparameters.

Disease Model Type Accuracy Training Script
Alzheimer's Disease Random Forest ~95% train_alzheimer.py
Anemia Random Forest ~95% train_anemia.py
Breast Cancer Random Forest ~96% train_breast_cancer.py
Depression Random Forest ~89% train_depression_model.py
Diabetes Random Forest ~93% train_diabetes.py
Heart Disease Random Forest ~97% train_heart.py
Kidney Disease Random Forest ~94% train_kidney.py
Liver Disease Random Forest ~96% train_liver.py
Stroke Random Forest ~95% train_stroke.py
Thyroid Random Forest ~98% train_thyroid.py
Dengue In Progress ~95% train_dengue.py

Note: Accuracies are approximate and based on test set performance. Actual performance may vary with different data distributions.

  • Real-time Analysis: Get instant predictions with detailed results
  • Model Transparency: View confidence scores and contributing factors

๐Ÿค– AI Chat Assistants

  • Nutri-Bot: Personalized nutrition and diet recommendations
  • Symptom Checker: AI-powered preliminary health assessment

๐Ÿ“ฑ Modern & Responsive UI

  • Mobile-First Design: Works seamlessly on all devices
  • Interactive Elements: Smooth animations and transitions
  • Collapsible Sidebar: Optimized screen space usage
  • Accessibility: Keyboard navigation and screen reader support

๐Ÿ” Comprehensive Health Resources

  • Disease Information: Detailed descriptions and risk factors
  • Prevention Tips: Evidence-based health recommendations
  • First Aid Guidance: Quick reference for emergencies

๐ŸŽฎ Retro UI/UX Features

  • Pixel-Perfect Design: Nostalgic pixel art interface with smooth animations
  • Responsive Layout: Works on all devices from retro to modern
  • Dark Mode: Eye-friendly interface for extended use

๐Ÿ•น๏ธ Tech Stack

Frontend

  • HTML5 & CSS3 with Tailwind CSS
  • Vanilla JavaScript for interactivity
  • Responsive Design with mobile-first approach
  • Pixel Font for consistent typography

Backend

  • Netlify Functions for serverless API endpoints
  • Python 3.8+ for machine learning models and data processing
  • Node.js 16+ for server-side logic

Machine Learning

  • scikit-learn for all machine learning models (Random Forest)**
  • Pandas & NumPy for data processing and manipulation
  • Joblib for model serialization and loading
  • StandardScaler for feature scaling
  • LabelEncoder for categorical variable encoding

AI Integration

  • Gemini Flash 2.0 for chat-based assistance
  • Multi-turn dialogue support

Development Tools

  • Git for version control
  • Netlify CLI for local development
  • Visual Studio Code

๐Ÿ“ Project Structure

DISEASEXYZ/
โ”œโ”€โ”€ data/                    # Raw and processed datasets
โ”‚   โ”œโ”€โ”€ raw/                 # Original CSV files from various sources
โ”‚   โ”‚   โ”œโ”€โ”€ alzheimers_disease_data.csv
โ”‚   โ”‚   โ”œโ”€โ”€ Anaemia.csv
โ”‚   โ”‚   โ”œโ”€โ”€ Breast Cancer.csv
โ”‚   โ”‚   โ”œโ”€โ”€ Dengue diseases dataset.csv
โ”‚   โ”‚   โ”œโ”€โ”€ healthcare-dataset-stroke-data.csv
โ”‚   โ”‚   โ”œโ”€โ”€ indian_liver_patient.csv
โ”‚   โ”‚   โ”œโ”€โ”€ kidney_disease.csv
โ”‚   โ”‚   โ”œโ”€โ”€ new-thyroid.csv
โ”‚   โ”‚   โ””โ”€โ”€ Student Depression Dataset.csv
โ”‚   โ””โ”€โ”€ cleaned/             # Preprocessed and cleaned datasets
โ”‚
โ”œโ”€โ”€ functions/               # Netlify Functions
โ”‚   โ”œโ”€โ”€ utils/               # Utility functions
โ”‚   โ”‚   โ””โ”€โ”€ precautions.js   # Disease precautions database
โ”‚   โ”œโ”€โ”€ chat.js              # Chat functionality with Gemini AI
โ”‚   โ””โ”€โ”€ predict.py           # ML model prediction logic
โ”‚
โ”œโ”€โ”€ models/                  # Trained ML models and scalers
โ”‚   โ”œโ”€โ”€ alzheimers_model.pkl
โ”‚   โ”œโ”€โ”€ alzheimers_scaler.pkl
โ”‚   โ”œโ”€โ”€ anemia_model.pkl
โ”‚   โ”œโ”€โ”€ anemia_scaler.pkl
โ”‚   โ”œโ”€โ”€ breast_cancer_model.pkl
โ”‚   โ”œโ”€โ”€ dengue_model.joblib
โ”‚   โ”œโ”€โ”€ dengue_scaler.joblib
โ”‚   โ”œโ”€โ”€ depression_model.pkl
โ”‚   โ”œโ”€โ”€ depression_scaler.pkl
โ”‚   โ”œโ”€โ”€ diabetes_model.pkl
โ”‚   โ”œโ”€โ”€ diabetes_scaler.pkl
โ”‚   โ”œโ”€โ”€ heart_model.pkl
โ”‚   โ”œโ”€โ”€ heart_scaler.pkl
โ”‚   โ”œโ”€โ”€ kidney_model.pkl
โ”‚   โ”œโ”€โ”€ kidney_scaler.pkl
โ”‚   โ”œโ”€โ”€ liver_model.pkl
โ”‚   โ”œโ”€โ”€ liver_scaler.pkl
โ”‚   โ”œโ”€โ”€ stroke_model.pkl
โ”‚   โ””โ”€โ”€ thyroid_model.pkl
โ”‚
โ”œโ”€โ”€ public/                  # Static files
โ”‚   โ”œโ”€โ”€ assets/              # Images and icons
โ”‚   โ”‚   โ”œโ”€โ”€ alzheimer.jpg
โ”‚   โ”‚   โ”œโ”€โ”€ anemia.jpg
โ”‚   โ”‚   โ”œโ”€โ”€ breast_cancer.jpg
โ”‚   โ”‚   โ”œโ”€โ”€ default.jpg
โ”‚   โ”‚   โ”œโ”€โ”€ dengue.jpg
โ”‚   โ”‚   โ”œโ”€โ”€ depression.jpg
โ”‚   โ”‚   โ”œโ”€โ”€ diabetes.jpg
โ”‚   โ”‚   โ”œโ”€โ”€ heart.jpg
โ”‚   โ”‚   โ”œโ”€โ”€ kidney.jpg
โ”‚   โ”‚   โ”œโ”€โ”€ liver.jpg
โ”‚   โ”‚   โ”œโ”€โ”€ logo.png
โ”‚   โ”‚   โ”œโ”€โ”€ stroke.jpg
โ”‚   โ”‚   โ””โ”€โ”€ thyroid.jpg
โ”‚   โ”œโ”€โ”€ js/
โ”‚   โ”‚   โ”œโ”€โ”€ app.js           # Main application logic
โ”‚   โ”‚   โ””โ”€โ”€ chat.js          # Chat interface logic
โ”‚   โ””โ”€โ”€ index.html           # Main HTML file
โ”‚
โ”œโ”€โ”€ scripts/                 # Data processing and model training
โ”‚   โ”œโ”€โ”€ prepare.py           # Data cleaning and preprocessing
โ”‚   โ”œโ”€โ”€ train_alzheimer.py   # Alzheimer's disease model training
โ”‚   โ”œโ”€โ”€ train_anemia.py      # Anemia model training
โ”‚   โ”œโ”€โ”€ train_breast_cancer.py  # Breast cancer model training
โ”‚   โ”œโ”€โ”€ train_dengue.py      # Dengue model training
โ”‚   โ”œโ”€โ”€ train_depression_model.py  # Depression model training
โ”‚   โ”œโ”€โ”€ train_diabetes.py    # Diabetes model training
โ”‚   โ”œโ”€โ”€ train_heart.py       # Heart disease model training
โ”‚   โ”œโ”€โ”€ train_kidney.py      # Kidney disease model training
โ”‚   โ”œโ”€โ”€ train_liver.py       # Liver disease model training
โ”‚   โ”œโ”€โ”€ train_stroke.py      # Stroke prediction model training
โ”‚   โ””โ”€โ”€ train_thyroid.py     # Thyroid disease model training
โ”‚
โ”œโ”€โ”€ .gitignore              # Git ignore file
โ”œโ”€โ”€ netlify.toml            # Netlify configuration
โ”œโ”€โ”€ package.json            # Node.js dependencies
โ”œโ”€โ”€ requirements.txt        # Python dependencies
โ””โ”€โ”€ README.md               # This file

๐Ÿš€ Getting Started

Prerequisites

  • Node.js 16+
  • Python 3.8+
  • Netlify CLI (for local development)

Installation

  1. Clone the repository

    git clone https://github.com/yourusername/healthverse.git
    cd healthverse
  2. Install Python dependencies

    pip install -r requirements.txt
  3. Install Node.js dependencies

    npm install
  4. Set up environment variables Create a .env file in the root directory:

    GEMINI_API_KEY=your_gemini_api_key
  5. Run locally

    netlify dev

    The app will be available at http://localhost:8888

๐Ÿงช Model Training

Each disease model is trained using its own dedicated script for better maintainability and customization. Here's how to train the models:

Training Individual Models

Each model can be trained independently using its specific script:

# Navigate to the project root directory
cd path/to/HealthVerseAI

# Train Alzheimer's model
python train_alzheimer.py

# Train Anemia model
python train_anemia.py

# Train Breast Cancer model
python train_breast_cancer.py

# Train Depression model
python train_depression_model.py

# Train Diabetes model
python train_diabetes.py

# Train Heart Disease model
python train_heart.py

# Train Kidney Disease model
python train_kidney.py

# Train Liver Disease model
python train_liver.py

# Train Stroke model
python train_stroke.py

# Train Thyroid model
python train_thyroid.py

Training Details

  • Each training script handles its own data preprocessing, model training, and evaluation
  • Models are saved in the models/ directory
  • Training scripts output accuracy and classification reports
  • Each script is self-contained with its own data loading and preprocessing logic

๐Ÿ“ License

This project is licensed under the MIT License - see the LICENSE file for details.

๐Ÿค Contributing

Contributions are welcome! Please follow these steps:

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

๐ŸŒŸ Future Enhancements

  • Expanded Disease Coverage: Add more disease prediction models
  • Multi-language Support: Support for multiple languages
  • Mobile App: Native mobile applications for iOS and Android
  • Integration with Health Devices: Connect with wearables and health trackers
  • Telemedicine Integration: Connect with healthcare providers
  • Personal Health Dashboard: Track health metrics over time

๐Ÿ“ž Contact

Project Link:
https://github.com/ankan123basu/HealthVerseAI

GitHub Profiles:

๐Ÿ™ Acknowledgments


Made with โค๏ธ by ANKAN BASU & ANKIT BASU
Lovely Professional University

About

An all-in-one health analysis platform offering multi-disease prediction (11+ conditions), personalized nutrition guidance, and symptom checking with precautionary insights for over 60 diseases."

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •