Skip to content

adurymanov/mpv-python

Repository files navigation

MPV python assignment templates

Using this repo

The recommended way of using the templates is as follows.

First, you clone the repository:

git clone 

Then, you create a new branch for your solutions:

cd mpv-python-assignment-templates
git checkout -b solutions

After that, you can work on your solutions, commiting as necessary.

In order to update the template, commit all your work and execute:

# download the new template version:
git checkout master
git pull
# and update your solutions branch:
git checkout solutions
git merge master

You can create conda environment with all required packages via the following for CPU:

conda create --name mpv-assignments-cpu-only python=3.10
conda activate mpv-assignments-cpu-only
pip3 install torch==1.12.1+cpu torchvision==0.13.1+cpu torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cpu
pip3 install kornia==0.6.10 tqdm notebook matplotlib opencv-contrib-python==4.7.0.68 seaborn tensorboard tensorboardX ipywidgets widgetsnbextension
pip3 install kornia_moons --no-deps

And following for GPU. You may need to change the cuda version to the actually installed one. For the GPU setup, if you have CUDA-capable GPU (if needed - change CUDA version in command). To find out your CUDA version, run nvidia-smi. You will see something like:

Mon Feb 20 16:49:46 2023       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.39       Driver Version: 460.39       CUDA Version: 11.2     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  GeForce GTX 108...  On   | 00000000:01:00.0 Off |                  N/A |
| 25%   44C    P8    18W / 250W |      1MiB / 11178MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
|   1  GeForce GTX 108...  On   | 00000000:06:00.0 Off |                  N/A |
|ERR!   54C    P0   ERR! / 250W |      1MiB / 11178MiB |     75%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

In the example above, the CUDA version is 11.2, so you should use –extra-index-url https://download.pytorch.org/whl/cu112

conda create --name mpv-assignments-gpu python=3.10
conda activate mpv-assignments-gpu
pip3 install torch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu112
pip3 install kornia==0.6.10 tqdm notebook matplotlib opencv-contrib-python==4.7.0.68 seaborn tensorboard tensorboardX ipywidgets widgetsnbextension
pip3 install kornia_moons --no-deps

For Apple Silicon devices (M1, M2 family) use:

conda create --name mpv-assignments-cpu-only python=3.10
conda activate mpv-assignments-cpu-only
conda install -c apple tensorflow-deps
pip3 install tensorflow-macos tensorflow-metal
pip3 install torch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cpu
pip3 install kornia==0.6.10 tqdm notebook matplotlib opencv-contrib-python==4.7.0.68 seaborn tensorboard tensorboardX ipywidgets widgetsnbextension
pip3 install kornia_moons --no-deps

Keep in mind that the assignments and the assignment templates will be updated during the semester. Always pull the current template version before starting to work on an assignment!

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •