Pre-feed ONIX validation and metadata completeness scoring for publishing success.
Transform ONIX metadata quality with comprehensive validation, Nielsen completeness scoring, and retailer compatibility analysis. Designed for publishers, distributors, and metadata professionals.
Live Demo: http://100.111.114.84:8507 (Main Validator)
Analytics Dashboard: http://100.111.114.84:8508 (Batch Processing)
Business Demo: http://100.111.114.84:8090 (Stakeholder View)
- XSD Schema Validation - Structural validation against ONIX 3.0 standards
- Schematron Business Rules - Publishing industry best practices
- Custom Rule Engine - Publisher-specific requirements and contracts
- Nielsen Completeness Scoring - Metadata quality correlation with sales performance
- Retailer Compatibility Analysis - Platform-specific requirements (Amazon, IngramSpark, Apple Books, etc.)
- Sales Impact Analysis - Metadata completeness can drive up to 75% sales uplift
- Retailer Readiness Scoring - Platform compatibility assessment
- Batch Processing Analytics - Multi-file validation with trend analysis
- Interactive Results - Tabbed interface with detailed insights and quick fixes
- Contextual Help System - Business-focused tooltips and guidance
- Progressive Disclosure - Information organized by complexity
- Error Resolution Support - Actionable quick fix suggestions
- Export Capabilities - CSV data and markdown reports
Visit http://100.111.114.84:8507 - No setup required!
# Clone and setup
git clone https://github.com/user/meta-ops-validator.git
cd meta-ops-validator
python -m venv .venv
source .venv/bin/activate # Windows: .venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
export PYTHONPATH=$PWD/src
# Start main validator
streamlit run src/metaops/web/streamlit_app.py --server.port 8507 --server.address 0.0.0.0
# Or start analytics dashboard
streamlit run src/metaops/web/dashboard.py --server.port 8508 --server.address 0.0.0.0# Activate environment
source .venv/bin/activate
export PYTHONPATH=$PWD/src
# Validate ONIX file
python -m metaops.cli.main validate --file your_onix_file.xml
# Run specific validation stages
python -m metaops.cli.main validate-xsd --file your_onix_file.xml
python -m metaops.cli.main validate-schematron --file your_onix_file.xml
python -m metaops.cli.main run-rules --file your_onix_file.xmlThe repository includes 15 generated ONIX test files with varying completeness levels:
- Minimal (30-40% completeness) - Basic required fields only
- Basic (50-60% completeness) - Standard publishing metadata
- Good (70-80% completeness) - Enhanced discovery metadata
- Excellent (90%+ completeness) - Maximum sales optimization
- Problematic - Intentional errors for testing validation rules
Files located in: test_onix_files/
- Namespace Detection - Identifies ONIX reference vs. short-tag format
- XSD Validation - Structural validation against ONIX 3.0 schema
- Schematron Rules - Business logic and relationship validation
- Custom Rule Engine - Publisher-specific validation rules
- Nielsen Scoring - Completeness scoring with sales correlation
- Retailer Analysis - Platform-specific compatibility assessment
streamlit_app.py- Main single-file validation interfacedashboard.py- Analytics dashboard for batch processingstreamlit_business_demo.py- Business stakeholder demonstrations
validators/onix_xsd.py- XSD schema validationvalidators/onix_schematron.py- Schematron business rulesvalidators/nielsen_scoring.py- Completeness scoring enginevalidators/retailer_profiles.py- Multi-retailer compatibilityrules/engine.py- Custom rule DSL processor
# Run UI usability tests with Playwright
python tests/test_ui_usability.py# Run validation pipeline tests
./test_core_functions.sh# Create ONIX test files with varying completeness
python scripts/generate_test_onix.py- Complete validation pipeline operational with official EDItEUR schemas
- Web interfaces with comprehensive UX
- Nielsen completeness scoring with sales correlation
- Multi-retailer compatibility analysis (Amazon, IngramSpark, Apple Books, etc.)
- Automated UI testing framework with Playwright MCP
- Comprehensive documentation and contextual tooltips
- Real ONIX 3.0 validation (reference and short-tag variants)
- EDItEUR Official: Using official ONIX 3.0 XSD schemas
- Namespace Support: Full support for reference and short-tag variants
- Auto-Detection: Automatic namespace detection and schema selection
- Validation Ready: Operational for real ONIX file processing
- Diagnostic report generation
- KPI tracking and analytics
- Multi-tier validation profiles
- Export capabilities for client deliverables
specs/ui-ux/tooltips-reference.md- Complete UI help text catalogspecs/ui-ux/ui-specification.md- Interface design and UX patternsspecs/technical/technical-specification.md- Architecture and integration detailsspecs/technical/api-specifications.md- RESTful API specificationmemory-bank/- Development context and patterns
# Every development session
source .venv/bin/activate
export PYTHONPATH=/home/ed/meta-ops-validator/srcThis project uses Memory Bank MCP for persistent development context:
memory-bank/active-context.md- Current development statememory-bank/progress.md- Task tracking and milestonesmemory-bank/decision-log.md- Architecture decisions with rationale
- Create validator in
src/metaops/validators/ - Add to pipeline in
CLAUDE.mdvalidation order - Update web interfaces with appropriate tooltips
- Add test coverage in
tests/
- Fork the repository
- Follow the patterns in
memory-bank/system-patterns.md - Ensure all validation stages maintain the pipeline order
- Add appropriate tooltips with business context
- Test UI changes with Playwright MCP
- Update documentation and memory bank files
See LICENSE file for details.
MetaOps Validator - Transforming ONIX metadata quality into publishing success.