Skip to content

adambalm/meta-ops-validator

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

20 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

MetaOps Validator β€” ONIX Validation Platform

Pre-feed ONIX validation and metadata completeness scoring for publishing success.

Transform ONIX metadata quality with comprehensive validation, Nielsen completeness scoring, and retailer compatibility analysis. Designed for publishers, distributors, and metadata professionals.

πŸš€ Quick Access

Live Demo: http://100.111.114.84:8507 (Main Validator)

Analytics Dashboard: http://100.111.114.84:8508 (Batch Processing)

Business Demo: http://100.111.114.84:8090 (Stakeholder View)

✨ Key Features

πŸ” Comprehensive Validation Pipeline

  • XSD Schema Validation - Structural validation against ONIX 3.0 standards
  • Schematron Business Rules - Publishing industry best practices
  • Custom Rule Engine - Publisher-specific requirements and contracts
  • Nielsen Completeness Scoring - Metadata quality correlation with sales performance
  • Retailer Compatibility Analysis - Platform-specific requirements (Amazon, IngramSpark, Apple Books, etc.)

πŸ“Š Business Intelligence

  • Sales Impact Analysis - Metadata completeness can drive up to 75% sales uplift
  • Retailer Readiness Scoring - Platform compatibility assessment
  • Batch Processing Analytics - Multi-file validation with trend analysis
  • Interactive Results - Tabbed interface with detailed insights and quick fixes

🎯 User Experience

  • Contextual Help System - Business-focused tooltips and guidance
  • Progressive Disclosure - Information organized by complexity
  • Error Resolution Support - Actionable quick fix suggestions
  • Export Capabilities - CSV data and markdown reports

πŸƒβ€β™‚οΈ Quickstart (5 Minutes)

Option 1: Use Live Demo

Visit http://100.111.114.84:8507 - No setup required!

Option 2: Local Installation

# Clone and setup
git clone https://github.com/user/meta-ops-validator.git
cd meta-ops-validator
python -m venv .venv
source .venv/bin/activate  # Windows: .venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt
export PYTHONPATH=$PWD/src

# Start main validator
streamlit run src/metaops/web/streamlit_app.py --server.port 8507 --server.address 0.0.0.0

# Or start analytics dashboard
streamlit run src/metaops/web/dashboard.py --server.port 8508 --server.address 0.0.0.0

Option 3: CLI Usage

# Activate environment
source .venv/bin/activate
export PYTHONPATH=$PWD/src

# Validate ONIX file
python -m metaops.cli.main validate --file your_onix_file.xml

# Run specific validation stages
python -m metaops.cli.main validate-xsd --file your_onix_file.xml
python -m metaops.cli.main validate-schematron --file your_onix_file.xml
python -m metaops.cli.main run-rules --file your_onix_file.xml

πŸ“ Test Files Included

The repository includes 15 generated ONIX test files with varying completeness levels:

  • Minimal (30-40% completeness) - Basic required fields only
  • Basic (50-60% completeness) - Standard publishing metadata
  • Good (70-80% completeness) - Enhanced discovery metadata
  • Excellent (90%+ completeness) - Maximum sales optimization
  • Problematic - Intentional errors for testing validation rules

Files located in: test_onix_files/

πŸ—οΈ Architecture

Validation Pipeline

  1. Namespace Detection - Identifies ONIX reference vs. short-tag format
  2. XSD Validation - Structural validation against ONIX 3.0 schema
  3. Schematron Rules - Business logic and relationship validation
  4. Custom Rule Engine - Publisher-specific validation rules
  5. Nielsen Scoring - Completeness scoring with sales correlation
  6. Retailer Analysis - Platform-specific compatibility assessment

Web Interfaces

  • streamlit_app.py - Main single-file validation interface
  • dashboard.py - Analytics dashboard for batch processing
  • streamlit_business_demo.py - Business stakeholder demonstrations

Core Validators

  • validators/onix_xsd.py - XSD schema validation
  • validators/onix_schematron.py - Schematron business rules
  • validators/nielsen_scoring.py - Completeness scoring engine
  • validators/retailer_profiles.py - Multi-retailer compatibility
  • rules/engine.py - Custom rule DSL processor

πŸ§ͺ Testing

UI Testing (Automated)

# Run UI usability tests with Playwright
python tests/test_ui_usability.py

Core Function Testing

# Run validation pipeline tests
./test_core_functions.sh

Generate Test Files

# Create ONIX test files with varying completeness
python scripts/generate_test_onix.py

πŸ“‹ System Status

Current Status βœ…

  • Complete validation pipeline operational with official EDItEUR schemas
  • Web interfaces with comprehensive UX
  • Nielsen completeness scoring with sales correlation
  • Multi-retailer compatibility analysis (Amazon, IngramSpark, Apple Books, etc.)
  • Automated UI testing framework with Playwright MCP
  • Comprehensive documentation and contextual tooltips
  • Real ONIX 3.0 validation (reference and short-tag variants)

Schema Status βœ…

  • EDItEUR Official: Using official ONIX 3.0 XSD schemas
  • Namespace Support: Full support for reference and short-tag variants
  • Auto-Detection: Automatic namespace detection and schema selection
  • Validation Ready: Operational for real ONIX file processing

Business Model Ready πŸ’°

  • Diagnostic report generation
  • KPI tracking and analytics
  • Multi-tier validation profiles
  • Export capabilities for client deliverables

πŸ“– Documentation

  • specs/ui-ux/tooltips-reference.md - Complete UI help text catalog
  • specs/ui-ux/ui-specification.md - Interface design and UX patterns
  • specs/technical/technical-specification.md - Architecture and integration details
  • specs/technical/api-specifications.md - RESTful API specification
  • memory-bank/ - Development context and patterns

πŸ”§ Development

Environment Setup

# Every development session
source .venv/bin/activate
export PYTHONPATH=/home/ed/meta-ops-validator/src

Memory Bank Integration

This project uses Memory Bank MCP for persistent development context:

  • memory-bank/active-context.md - Current development state
  • memory-bank/progress.md - Task tracking and milestones
  • memory-bank/decision-log.md - Architecture decisions with rationale

Adding New Validators

  1. Create validator in src/metaops/validators/
  2. Add to pipeline in CLAUDE.md validation order
  3. Update web interfaces with appropriate tooltips
  4. Add test coverage in tests/

🀝 Contributing

  1. Fork the repository
  2. Follow the patterns in memory-bank/system-patterns.md
  3. Ensure all validation stages maintain the pipeline order
  4. Add appropriate tooltips with business context
  5. Test UI changes with Playwright MCP
  6. Update documentation and memory bank files

πŸ“œ License

See LICENSE file for details.


MetaOps Validator - Transforming ONIX metadata quality into publishing success.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •  

Languages