Boundaries between virtual and reality are non-existent.
Open Source License: CC BY-NC-SA 4.0
Project Code Name: Aether-Link Core Vision: To construct a "Zero-Perceptual Latency" Virtual Reality 2.0 terminal via photonic-level visual relays and rigid physical feedback.
This project aims to resolve the three core pain points of the current XR sector: Vergence-Accommodation Conflict (VAC), the Artificiality of Physical Feedback, and System Response Latency.
We decouple the display terminal from the traditional "face-mounted screen" into a "Mother Unit (Side-Projection Glasses) + Child Unit (Corneal Contact Lens)" architecture to achieve retina-level imaging. Simultaneously, we construct a "2N Redundancy Loop" based heterogeneous floor tile matrix and a gyroscope force-feedback system. Utilizing feed-forward data from a haptic suit, the system achieves a millisecond-level pre-recomposition of the physical world.
Note: The visual system can also be produced independently to replace all traditional screens.PPD (60-120)、FOV (180°)、Latency (<10ms)
Mother Unit (Glasses End):
- Side-Projection: Micro-LED/OLED screen modules are installed on both sides of the temple arms. The center of gravity is shifted backward, and the optical path is folded into the line of sight via Total Internal Reflection (TIR) prisms.
- Stepped Relay:
- Stage 1 (Fine-Tuning): Liquid lenses near the light source are responsible for micrometer-level focal length correction.
- Stage 2 (Scanning): Dual-axis Voice Coil Motors (VCM) near the eyeball, combined with a six-axis IMU, perform dynamic stabilization of the light beam and alignment with the entrance pupil.
Dual-Mode Medium: The front uses Electrochromic Glass. It switches between high transmittance (AR Mode) and 0.1% transmittance (VR Mode) in milliseconds, coordinated with adaptive light sensors.
Child Unit (Eye End):
- Custom RGP Contact Lens: Customized based on user Scleral Mapping, utilizing tear tension for adsorption.
- Nano-Lightguide Texture: A diffractive optical waveguide is etched into the center of the lens , responsible for correcting the incident angle of the side-projected beam to enter the retina vertically, achieving an ultra-wide Field of View (FOV).
- Auto-Calibration Algorithm: Utilizing infrared feature points on the contact lens combined with the Mother Unit's IR camera, the coordinate system is established instantly upon startup, automatically compensating for rotational deviation during wear.
Three-Layer Structure Design:
- Inner Layer (Corneal Contact Layer): Uses high water content soft silicone hydrogel to perfectly fit the corneal contour, ensuring long-term wearing comfort.
- Middle Layer (Optical Function Layer): A rigid material layer where the nano-scale diffractive optical waveguide texture is laser-etched, responsible for vertically deflecting the side-projected beam into the retina.
- Outer Layer (Protective Layer): Covered with an ultra-thin soft coating to protect the nano-texture from eyelid scratching and to smooth the tactile surface of the lens.
Oxygen Permeability & Metabolism Scheme:
- High Dk Value Materials: All layers utilize Fluorosilicone hydrogel with an extremely high oxygen permeability coefficient (High Dk/t), allowing oxygen to penetrate the lens directly to the cornea.
- Micro-Channel Design: Microscopic tear exchange channels, invisible to the naked eye, are designed at the lens edge. They utilize pressure differentials generated by blinking to pump tears, removing metabolic waste and ensuring the cornea remains in an "aerobic respiration" state.
Principle: Pupil Matching & Afocal Display Traditional VR involves eyes focusing on a screen, creating focal conflicts. This system converts images into collimated light beams that are projected directly onto the retina via the contact lens. Since the beams are extremely narrow and undergo multi-stage calibration, the system possesses near-infinite Depth of Field (DoF), completely eliminating motion sickness. Furthermore, due to optical path compression, it can achieve a limit clarity of 60-120 PPD (Pixels Per Degree).
Abandoning fixed designs in favor of logic-based streamed recomposition.
Heterogeneous Tiles: The floor tile units are divided by various physical attributes, such as:
- Mud Module: Sealed hydraulic layer simulating viscosity and sinking.
- Gravel Module: Piston array simulating irregular ground.
- Water Module: Fluid filling with resistance pumps.
- Vegetation Module: Gaps integrated with retractable flexible polymers.
Loop Logic: Each attribute tile is equipped with at least 2 units (2N). When a user steps on the first tile, the system calculates the vector and pre-dispatches the second backup tile to move to the predicted landing spot.
- Force-Averaging Suspension: A cable system on a rotating bracket dynamically counteracts 30%-50% of gravity. When a forward body tilt (running posture) is detected, cable tension increases, and the tile loop accelerates.
- Imperceptible Re-centering: Exploiting the threshold blind zone of the human vestibular system, the tiles perform micro-translations while carrying the user, keeping the user consistently limited to the center of the physical space.
- Structure: A piston array surrounding the user (similar to a 3D Pin Screen), which can also attach various physical attributes.
- Logic:
- Static Shaping: Pistons extend to different lengths to simulate contours of walls, rocks, etc.
- Rigid Collision: Internal pneumatic valves lock and provide micro-rebound at the instant of high-speed impact, simulating the blocking sensation of a solid wall.
- Micro-Magnetic Array: Fabric embedded with high-density magnetic particles and coils.
- Dual Feedback:
- Texture Simulation: High-frequency, low-amplitude vibrations simulate wind, water flow, and tactile sensations via algorithms.
- Projectile Impact: Localized coils generate strong instantaneous magnetic fields to propel magnetic beads against the skin (buffered by lining), simulating the kinetic energy of being hit (Bullet Impact).
-
Vector Fan Array with Thermal Feedback:
-
Dynamic Wind Simulation: High-speed micro-fans integrated into the physical wall modules utilize fluid dynamics algorithms to simulate wind direction and velocity.
-
Thermal Mapping: Each fan is equipped with a TEC (Thermoelectric Cooler/Heater) to switch between freezing gusts and heatwaves in milliseconds, mapping the environment's temperature to the skin.
-
7.1.4 Spherical Spatial Audio:
-
Phased-Array Acoustics: Ultra-thin piezoelectric ceramic speakers are deployed across the physical frame.
-
Beamforming Technology: Sound is focused precisely on the user’s ears using phase-difference algorithms, creating deep immersion where sound sources have actual physical distance without the need for headphones.
- Microfluidic Odor Synthesis: The module stores 16–32 base aromatic essences (e.g., ozone, gunpowder, pine, brine).
- Precision Mixing: Utilizing microfluidic pumps to mix essences in real-time, synthesizing thousands of derivative scents (e.g., "burning wood after rain").
- Instant Odor Voiding: Integrated negative pressure suction synchronized with the fan array to evacuate residual scents during scene transitions, preventing "olfactory ghosting."
- Bio-compatible Mouthpiece: A micro-injection interface or tip-of-tongue contact patch.
- The Five Basic Tastes: Internal reservoirs for Acid, Sweet, Bitter, Salty, and Umami concentrates, including cooling/heating agents to simulate spiciness.
- Chemical Bio-Coupling: Micro-doses (microliter scale) are released based on virtual interactions, while the haptic suit stimulates jaw muscles to simulate the physical sensation of chewing.
The system leverages the vertical redundancy of the floor matrix to expand "2D planar displacement" into "3D volumetric morphing".
- Vertical Elevation Logic: Floor tile units double as structural modules. Upon detecting interaction intent (sitting or leaning), specific tiles elevate via high-torque hydraulic actuators to form rigid tables or chairs.
- Spatial Reconfiguration: These modules lock into place to create physical surfaces that perfectly align with the virtual environment's layout.
By employing 'Sparse Physical Modeling' logic, the system reconstructs a complex physical world using a minimal set of real-world proxy models.
- Encountered Haptics: Multi-DOF robotic arms stationed around the perimeter deliver physical "proxies" to the user's hand in real-time.
- Proxy Models: Pre-fabricated, magnetically-coupled objects that mimic the weight, center of gravity, and texture of common items (e.g., branches, tools, books).
- System Synergy: By combining tile-based tables with robotic-arm-delivered items, the system achieves "Sparse Physical Modeling"—using minimal real-world objects to trick the brain into perceiving a fully populated physical room.
By leveraging the synergy between Morphing Furniture (Tiles) and Prop-Delivery Robotic Arms, the system achieves high-fidelity simulation of complex environments using "Sparse Physical Proxies":
- **Forest Traversal:**The robotic arm positions an imitated branch proxy (weighted and textured) horizontally across the user’s predicted path. As the user pushes through the virtual brush, the arm provides dynamic mechanical resistance. Combined with the Vegetation Modules in the floor tiles, this replicates the multi-layered physical struggle of navigating a dense forest.
- **Library & Workspace Synergy:**The system elevates specific Tile Units to a precise height to form a rigid "Table Module." Simultaneously, the robotic arm places several "Physical Book Proxies" onto the elevated surface. When the user reaches out to touch a book or lean on the desk, the tactile feedback perfectly aligns with the virtual library. The brain, receiving these key physical anchors, automatically populates the entire virtual room with a sense of "real existence."
Utilizing the principle of Conservation of Angular Momentum to reproduce the feel of heavy weapons in a lightweight handle.
-
Dual-Ended CMG (Control Moment Gyroscopes): A set of high-speed flywheels at both the head and tail.
-
Mass Sensation: Changing the flywheel axis generates a precession effect, simulating the inertial resistance of wielding a heavy sword.
-
Deflection/Parry: Instantaneously changing the gyroscope tilt angle generates transverse torque, forcibly deviating the hand's trajectory.
-
Cutting Sensation: Pulsed changes in RPM simulate the friction and hesitation of cutting into different materials.
-
Front Reverse Gyro & Pendulum:
-
Hit Vibration: An internal electromagnetic rail drives a heavy metal pendulum to strike the front end, generating a core impact vibration.
-
Rigid Bounce-back: At the moment of striking a hard wall, the front gyroscope explodes into reverse rotation, generating immense reverse torque to counteract the swing momentum.
- Overhead Magnetic Rack: An overhead rotating robotic arm adsorbs the weapon handle via magnetic force. Based on game logic, it automatically lowers the handle to a grasping position in front of the user's field of view, simulating drawing a sword from the back or the void.
The core of the system is being "Faster than Reality." It no longer waits for physical contact to trigger but predicts based on haptic suit data.
- Data Source: Full-body high-frequency IMU + Pressure Sensor Array on the haptic suit.
- Vector Calculation: A dedicated ASIC chip resolves limb motion trajectories and velocity vectors in real-time.
- Pre-Action:
-
Example: Arm swing speed
$10m/s$ , distance to wall$20cm$ → System determines impact in$20ms$ → Physical wall pistons lock$10ms$ early → Weapon front gyroscope pre-accelerates$5ms$ early. - Result: Completely eliminates the physical response latency of mechanical structures, achieving zero-time-difference feedback.
- Function: Storage and cleaning of custom contact lenses.
- Mechanism: Utilizes ultrasonic cavitation effects to clean protein deposits within the nano-lightguide textures. A built-in laser scanning module automatically detects texture wear after each cleaning and generates calibration parameters to synchronize with the Mother Unit chip.
By reversing the optical path logic of the Aether-Link system, we create a specialized sensor array—Aether-Eye. This is no longer mere "image capture"; it represents the "Cambrian Explosion" in the evolutionary history of Artificial Intelligence.
Data Dimensional Supremacy
- Retinal-Grade Dynamic Range: The AI does not perceive world-as-pixels, but as a raw photon stream coupled through advanced optics, boasting unparalleled dynamic range and granular detail.
- Perfect Physical Alignment: With Aether-Eye integrated into the eyewear, the AI’s visual feed is physically synchronized with the user's ocular coordinates. The AI doesn’t just see what you see; it knows exactly where your visual attention (Eye-tracking) is focused in real-time.
- "Causality" Data: The AI stops observing "results" and starts learning the "process"—the synergy between eye, brain, and hand. This high-dimensional data of intent-driven action is something no web crawler or traditional camera can ever harvest.
The Coach for "Embodied AI"
- Massive First-Person Samples: AI can observe the mechanics of the world through a human-centric lens: how a cap is unscrewed, how obstacles are navigated, or how emotions are conveyed through subtle gaze.
- Physical Feedback Loop: Utilizing the 2N Redundant Tiles and Haptic Suits, the system masters the relationship between vision and force. When a human acts in the virtual-physical hybrid space, the AI learns instantly: "When the visual input presents this specific waveform, the physical counterforce is 50 Newtons."
- Result: AI can simulate the entirety of human physical experience in a hyper-compressed timeframe, solving the "Maneuverability Gap" in Embodied AI and robotics.
This system does more than render Virtual Reality; it mirrors the entire physical world in real-time. By bi-directionally capturing vision, locomotion (Tiles), and kinetic feedback (CMG), it constructs a real-time Digital Twin engine.
"Lossless Upload" of Physical Experience
- The End of Motion Capture: Expensive optical MoCap studios become obsolete. Every pressure point on the tiles and every change in angular momentum from the gyroscopes becomes precise mechanical data.
- The AI Simulator: AI uses this data to learn human physical responses across varied terrains and gravitational sensations. This is ten thousand times more authentic than any computer-generated simulation, as these are physical samples driven by actual human neural impulses.
Real-Time Digitization of "Reality"
- Crowdsourced 3D Reconstruction: When ten thousand users walk through the streets of New York, ten thousand pairs of "eyes" are performing multi-view 3D reconstruction in real-time.
- Dynamic Updates: Any change in the physical world—a new street sign, the growth of a tree—is instantaneously synchronized to its virtual coordinate. The virtual world ceases to be static code and becomes an organic entity breathing with reality.
Holographic Replay of Memory and Social Interaction
- Physics-Level Recording: Current video is merely flat pixels. This system captures the trinity: Visual Focus + Physical Resistance + Spatial Displacement.
- Reliving Experience: When replaying a memory, the tiles simulate the original slope of the ground, and the CMG peripherals replicate the subtle force of holding a loved one's hand. This "Full-Fidelity Capture" makes "Sensory Recording" a reality.
Conclusion: Project Aether-Link is an attempt to reconstruct physical reality. We do not manufacture illusions; we manufacture physical rules. Through this system, humanity will obtain "Programmable Material Reality" for the first time.
虚拟与现实本无界限
开源许可协议: CC BY-NC-SA 4.0
项目代号: Aether-Link (以太链接) 核心愿景: 通过光子级视觉中继与刚性物理反馈,构建“零感知延迟”的虚拟现实 2.0 终端。
本项目旨在解决当前 XR 领域的三大核心痛点:视觉辐辏调节冲突 (VAC)、物理反馈的虚假感以及系统响应延迟。
我们将显示终端从传统的“面部屏幕”解耦为“母机(侧投眼镜)+ 子机(角膜接触镜)”架构,实现视网膜级成像;同时构建基于“2N 冗余循环”的异构地砖矩阵与陀螺仪力反馈系统,利用体感服的传感器前馈数据,实现物理世界的毫秒级预重组。
注:该视觉系统也可独立生产,以取代所有传统屏幕。PPD (60-120)、FOV (180°)、Latency (<10ms)
母机(眼镜端):
- 侧置投影 (Side-Projection): Micro-LED/OLED 屏幕模组安装于镜腿两侧,重心后移,通过全反射棱镜将光路折入视线。
- 阶梯式光路 (Stepped Relay):
- 一级精调: 靠近光源的液态透镜负责微米级焦距修正。
- 二级扫掠: 靠近眼球的双轴音圈马达 (VCM) 配合六轴 IMU,进行光束的动态稳定与入瞳对齐。
双模介质: 前向采用电致变色玻璃。高透光率(AR模式)与 0.1% 透光率(VR模式)毫秒级切换,配合自适应光感传感器。
子机(眼球端):
-
定制 RGP 接触镜: 基于用户角膜拓印(Scleral Mapping)定制,利用泪液张力吸附。
-
纳米导光纹理: 镜片中心刻蚀衍射光波导,负责将侧投光束的入射角修正为垂直射入视网膜,实现超大视场角 (FOV)。
-
自标定算法: 利用隐形眼镜上的红外特征点,结合母机红外相机,在开机瞬间完成坐标系建立,自动补偿佩戴旋转偏差。
三层结构设计:
-
内层(角膜接触层): 采用高含水量的软性硅水凝胶,完美贴合角膜轮廓,确保持久佩戴的舒适性。
-
中层(光学功能层): 高刚性材料层,表面激光刻蚀纳米级衍射光波导纹理,负责将侧投光束垂直偏转射入视网膜。
-
外层(保护层): 覆盖一层超薄软性涂层,保护纳米纹理不被眼睑刮损,同时平滑镜片表面触感。
透氧与代谢方案:
-
高 Dk 值材料: 全层材料均采用极高透氧系数(High Dk/t)的氟硅水凝胶,氧气可直接穿透镜片到达角膜。
-
微流道设计: 镜片边缘设计有肉眼不可见的微型泪液交换通道,利用眨眼产生的压力差泵送泪液,带走代谢废物,确保角膜处于“有氧呼吸”状态。
原理:光瞳匹配与无焦显示 传统 VR 是眼睛看屏幕,存在焦距冲突。本系统通过将图像转化为准直光束,经由接触镜直接投射至视网膜。由于光束极细且经过多级校准,系统具备近乎无限的景深,彻底消除眩晕感,同时因光路压缩,可实现 60-120 PPD 的极限清晰度。
摒弃固定的设计,采用流式重组逻辑。
异构模块 (Heterogeneous Tiles): 地砖单元分为多种物理属性,比如:
- 泥沼模块: 密封液压层,模拟粘滞与下陷。
- 碎石模块: 阵列式推杆,模拟不规则地面。
- 水域模块: 流体填充与阻力泵。
- 植被模块: 缝隙集成可伸缩柔性聚合物。
循环逻辑: 每种属性地砖至少配备 2 块(2N)。当用户踏在第一块上时,系统计算矢量,提前调度第二块备用地砖移动至预测落点。
- 力平均悬挂: 旋转支架上的缆绳系统动态抵消 30%-50% 重力。检测到身体前倾(跑步姿态)时,缆绳拉力增加,地砖循环加速。
- 无感归正 (Imperceptible Re-centering): 利用人类前庭系统的阈值盲区,地砖在承载用户移动时进行微小的反向平移,将用户始终限制在物理空间的中心区域。
- 结构: 环绕周身的推杆阵列(类似 3D 针幕),同样也可附带多种物理属性。
- 逻辑:
- 静态塑形: 推杆伸出长度差,模拟墙壁、岩石等轮廓。
- 刚性碰撞: 内部气动阀在高速撞击瞬间锁死并微量回弹,模拟实体墙的阻挡感。
- 微磁阵列: 织物内嵌高密度磁性微粒与线圈。
- 双重反馈:
- 纹理模拟: 高频低幅震动模拟风吹、水流,并通过算法让磁珠模拟触觉。
- 弹射冲击: 局部线圈产生强瞬时磁场,弹射磁珠撞击皮肤(内衬缓冲),模拟受击动能(Bullet Impact)。
-
全向矢量风机阵列 (Vector Fan Array):
-
动态风感: 物理墙模块顶端集成微型高转速风机,配合流体动力学算法,模拟虚拟世界中的风向与风速。
-
热力反馈: 风机前置半导体制冷/加热片(TEC),可在毫秒内切换出冷风(雪地场景)或热浪(爆炸/沙漠场景),实现环境温度的物理映射。
-
球形空间声场 (Spherical Spatial Audio):
-
物理环绕阵列: 在物理墙框架的 7.1.4 布局点位部署超薄压电陶瓷扬声器。
-
波束成形技术: 利用相位差算法,将声音精准“聚焦”到用户耳部,配合母机(眼镜)的耳部补偿音效,实现即使不戴耳机也能分辨声源物理距离的深度沉浸感。
- 预设气味矩阵: 模块内置 16-32 种基础气味原液(如草木、硝烟、海水、泥土等)。
- 微流控混合技术 (Microfluidics): 通过高精度微泵将不同原液泵入混合室。利用不同比例的雾化组合,合成出数千种衍生气味(如“燃烧的松木”或“雨后的街道”)。
- 瞬时排空机制: 配合风机阵列的负压吸风功能,在场景切换时迅速抽离残留气味,防止气味残留导致感官认知偏差。
- 口含式添加剂模块: 一种符合生物安全标准的微型咬合装置或舌尖接触贴片。
- 五味原液混合: 装置内部储存有极高浓度的五种基础味觉(酸、甜、苦、咸、鲜)以及清凉剂/发热剂(模拟辣味)。
- 生物脉冲控制: 根据虚拟世界的饮食或环境交互,通过微喷射技术将微量(微升量级)的添加剂混合物释放至舌尖区域。
- 真实质感模拟: 配合微磁体感服对下颌肌肉的电刺激,模拟咀嚼感,结合化学味觉反馈,实现对虚拟食物或环境毒素的生理级还原。
该系统利用地面矩阵的纵向冗余,将“二维平面位移”扩展至“三维空间塑形”。
地砖单元重构 (Tile-Unit Reconfiguration):
-
桌子/凳子模式: 当虚拟环境检测到用户准备坐下或触碰桌面时,特定区域的地砖单元通过高强度液压支撑杆迅速升起,锁定在预设高度。模块化的方形表面通过拼合,形成刚性的物理平面。
-
自适应高度: 系统根据虚拟物体的物理参数实时调节模块高度,实现从矮凳到高台的无缝切换。
-
表面属性增强: 配合物理墙的材质模拟技术,升起的桌面模块可改变摩擦力与软硬度,模拟木材、石材或金属质感。
系统通过“稀疏物理建模”逻辑,用少量的真实模型还原复杂的物理世界。
多自由度机械手阵列 (Prop-Delivery Robotic Arms): 环绕系统部署的多组高速、多自由度机械手。
- 物理代理模型 (Physical Proxies): 预先制作的一系列带磁吸接口的通用模型(如圆柱体模拟树枝、长方体模拟书籍/手机等),每个模型都精确匹配了其对应类别的质心与重量。 协同逻辑(Encountered Haptics):
- 预判投放: 利用体感服的前馈预测数据,当用户伸手准备抓取虚拟物体(如一本书)时,机械手瞬间抓取对应的物理模型,并在触碰前的一刻精准移动至虚拟坐标位置。
- 磁吸耦合: 模型通过磁力与机械手连接,用户抓取后机械手可保持跟随状态以提供连续阻力,或在需要丢弃时瞬间断开。
通过利用变形家具(瓷砖)和道具递送机械臂之间的协同作用,该系统使用“稀疏物理代理”实现了复杂环境的高保真模拟:
- 森林穿行: 机械手横向持握“树枝模型”挡在路径上,提供真实的拨开阻力。
- 图书馆场景: 机械手配合桌子模块,在桌面上方精准排布几本“物理书模型”,用户触摸到这几本书的瞬间,大脑会通过视觉补偿自动补全整个书架的物理存在感。
利用角动量守恒原理,在轻量化手柄中重现重武器手感。
-
双端 CMG (控制力矩陀螺): 首尾各一组高速飞轮。
-
质量感: 改变飞轮轴向产生进动效应,模拟挥舞重剑的惯性阻力。
-
滑开/格挡: 瞬时改变陀螺仪倾角,产生横向扭矩,强行带偏手部轨迹。
-
切割感: 脉冲式改变转速,模拟切入不同材质的摩擦顿挫。
-
前置反向陀螺仪 & 摆锤:
-
命中震感: 内部电磁滑轨驱动重金属摆锤撞击前端,产生心震。
-
刚性弹回: 撞击硬墙瞬间,前置陀螺仪反向爆发旋转,产生巨大反向扭矩抵消挥砍动量。
- 悬顶磁吸架: 顶部旋转机械臂通过磁力吸附武器手柄。根据游戏逻辑,自动将手柄下放至用户视野前方的抓取位置,模拟从背部或虚空拔剑。
系统核心在于**“比现实快一步”**。不再等待物理接触触发,而是基于体感服数据进行预判。
- 数据源: 体感服全身高频 IMU + 压力传感器阵列。
- 矢量计算: 专用 ASIC 芯片实时解算肢体运动轨迹与速度矢量。
- 预先反应 (Pre-Action):
-
例: 手臂挥动速度
$10m/s$ ,距离墙壁$20cm$ → 系统判定$20ms$ 后撞击 → 物理墙推杆提前$10ms$ 锁定 → 武器前置陀螺仪提前$5ms$ 预加速。 - 结果: 彻底消除机械结构的物理响应延迟,实现零时差反馈。
- 功能: 存放与清洗定制隐形眼镜。
- 机制: 利用超声波空化效应清洗纳米导光纹理中的蛋白沉积。内置激光扫描模块,每次清洗后自动检测纹理磨损度,并生成校准参数同步至母机芯片。
将计划的光路逻辑反向运行,做成摄像头(我们姑且称之为 Aether-Eye),这就不再是简单的“图像采集”,而是 AI 进化史上的**“寒武纪大爆发”**。
数据的“降维打击”
- 视网膜级动态范围: AI 看到的不是像素点,而是经过光学耦合、具备极高动态范围和细节的光子流。
- 物理坐标对齐: 如果眼镜上装了这种摄像头,AI 看到的画面与你眼球转动的物理坐标是完美同步的。AI 不仅看到了你看到的,它还实时知道了你的**视觉注意力(Eye-tracking)**在哪里。
- “因果律”数据: AI 看到的不再是结果,而是你如何通过眼神引导动作的过程。这种“眼-脑-手”协同的高维数据,是目前任何互联网爬虫都抓不到的。
“具身智能”的教练
- 海量实时样本: AI 能够以人类的第一视角观察这个世界如何运作:如何拧开瓶盖、如何避开障碍物、如何通过眼神表达情绪。
- 物理反馈闭环: 别忘了你还有 2N 冗余地板和力反馈套件。当人类在虚拟世界里做出动作时,AI 同时掌握了视觉输入和物理反馈。它能瞬间学会:“当视觉呈现这种波形时,物理反作用力是 50 牛顿。” 结果: AI 可以在极短时间内模拟出人类的全部物理经验,这直接解决了机器人领域最难的“具身智能(Embodied AI)”训练问题。
这套系统不仅在输出虚拟现实,更是在实时镜像(Mirroring)整个物理世界。通过对视觉、位移(地板)、动能反馈(CMG)双向采集,构建一个全实时的数字孪生(Digital Twin)引擎。
物理经验的“无损上传”
- 动作捕捉的终结: 不再需要昂贵的光学动捕房。每一个地砖的压力数据、每一个陀螺仪的角动量变化,都是最精确的物理力学数据。
- AI 的“模拟器”: AI 可以通过这些数据学习人类在不同地形、不同重力感下的物理反馈。这比在电脑里跑模拟程序要真实一万倍,因为这是真实人类神经驱动的物理样本。
“现实”的实时数字化
- 众包式建模: 当一万个人戴着眼镜走在纽约街头,这一万双眼睛就在实时进行多视角三维重建。
- 动态更新: 现实世界中任何一个路牌的变化、一棵树的生长,都会瞬间同步到虚拟世界的对应坐标中。虚拟世界不再是静态的代码,而是随现实呼吸的有机体。
社交与记忆的“全息回放”
- 物理级录像: 现在的录像只是平面像素。你的系统采集的是:视觉焦点+物理阻力+空间位移。
- 重现体验: 当你回放一段记忆时,地砖会模拟当时的坡度,CMG 道具会模拟当时你握住爱人手时的力度。这种“全仿真采集”让**“感官录制”**成为了可能。
结语: Project Aether-Link 是一次对物理现实的重构尝试。我们不制造幻觉,我们制造物理规则。通过这套系统,人类将首次获得“可编程的物质现实”。
请在操作前仔细阅读免责声明全文。 Please read the full Disclaimer before operation.
-
技术性质: 本项目中所包含的所有内容,包括但不限于设计逻辑、物理公式、工程图纸及商业模型,部分由大型语言模型 AI 辅助生成。尽管已进行逻辑审查,但 AI 生成的内容可能存在计算误差、物理局限性或未预见的工程风险。
-
风险自担: 本项目涉及超高速旋转(高 G 力)、高压容器及极端高温环境。任何个人或机构在尝试复现、制造或运行相关设备时,必须具备专业的工程知识与安全防护措施。
-
责任豁免: 作者 及 AI 编写参与方不对应因使用、复现或改进本开源技术而导致的任何直接或间接后果负责,包括但不限于设备损坏、财产损失、人员伤亡或法律纠纷。
-
非医疗/军事用途: 本项目仅供科学研究与实验参考,严禁在未获得相关国家资质的情况下用于非法用途。
-
Technical Nature: All content within this project, including but not limited to design logic, physical formulas, engineering schematics, and business models, was partially generated with the assistance of Large Language Model (LLM) AI. While logically reviewed, AI-generated content may contain calculation errors, physical limitations, or unforeseen engineering risks.
-
Assumption of Risk: This project involves ultra-high-speed rotation (High G-force), high-pressure vessels, and extreme thermal environments. Any individual or organization attempting to replicate, manufacture, or operate such equipment must possess professional engineering expertise and strictly adhere to safety protocols.
-
Limitation of Liability: The author and the AI contributors shall not be held liable for any direct or indirect consequences arising from the use, replication, or modification of this open-source technology, including but not limited to hardware failure, property damage, personal injury, or legal disputes.
-
Non-Regulated Use: This project is intended for scientific research and experimental reference only. Use for illegal purposes or in regulated sectors without proper national certification is strictly prohibited.