Skip to content

✨[졸업 프로젝트 2학기] '깊이 추정과 객체 검출을 사용한 조난자 수색 자율주행 드론' 프로젝트를 진행하였습니다. 객체 검출과 Android 앱 개발을 담당하였습니다.

Notifications You must be signed in to change notification settings

Yerineee/DingDone_final

 
 

Repository files navigation

DingDone: Autonomous Flight Drone for Searching Survivor with Monocular Depth Estimation and Object Detection

Requirments

Avoidance, Localization

  • This code is tested with Keras 2.2.4, Tensorflow 1.13, CUDA 10.0, on a machine with an NVIDIA Titan V and 16GB+ RAM running on Windows 10 or Ubuntu 16.
  • Other packages needed keras pillow matplotlib scikit-learn scikit-image opencv-python pydot and GraphViz for the model graph visualization and PyGLM PySide2 pyopengl for the GUI demo.
  • Minimum hardware tested on for inference NVIDIA GeForce 940MX (laptop) / NVIDIA GeForce GTX 950 (desktop).
  • Training takes about 24 hours on a single NVIDIA TITAN RTX with batch size 8.

Project Overview

  1. avoiding obstacle with monocular depth estimation
  2. detecting survivor with object detecting
  3. estimating distance and direction of survivor from drone

Run

  1. Clone this repository
$ git clone https://github.com/Ewha-BanBanBank/DingDone_final.git
  1. Connect drone to your computer
  2. Run Demo - avoiding obstacle
$ cd Avoidance
$ python3 DingDone_path.py
  1. Run Demo - detecting survivor, estimating position of survivor and showing those information to application
$ cd ../Localization
$ python3 localization.py

References

  1. Monocular Depth Estimation : https://github.com/ialhashim/DenseDepth
  2. Object Detection : https://github.com/ultralytics/yolov5

Poster

Video

뱅뱅뱅크_시연영상

About

✨[졸업 프로젝트 2학기] '깊이 추정과 객체 검출을 사용한 조난자 수색 자율주행 드론' 프로젝트를 진행하였습니다. 객체 검출과 Android 앱 개발을 담당하였습니다.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 71.4%
  • Python 22.7%
  • Java 5.9%