Skip to content
/ sise Public

A repository dedicated to projects and topics in Artificial Intelligence and Expert Systems.

Notifications You must be signed in to change notification settings

XEN00000/sise

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

45 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Sztuczna Inteligencja i Systemy Ekspertowe / Artificial Intelligence and Expert Systems βœ…

Author: Student project repository (Semestr 4)
Language: Python 3.x


πŸ“Œ Project Overview

This repository contains coursework for the subject Sztuczna Inteligencja i Systemy Ekspertowe (Artificial Intelligence and Expert Systems). It includes three main assignments (Zadanie1, Zadanie2, Zadanie3) that demonstrate search algorithms, a neural network (MLP) implementation, and a simple ML analysis example.

πŸ—‚οΈ Project Structure

  • Zadanie1/ β€” Fifteen Puzzle solver (BFS, DFS, A*) with research scripts and plotting utilities.
    • main.py, solver.py, chartGenerator.py, filesGenerator.py, plots/, resources/
  • Zadanie2/ β€” Multilayer Perceptron (MLP) implementation and tools for training/testing (Iris dataset example).
    • mlp.py, layer.py, encoder.py, dataLoader.py, test.py, UI.py, irisset.csv
  • Zadanie3/ β€” Data analysis and regression example (Decision Tree Regressor with learning curves).
    • app.py, data.csv

πŸš€ Quick Start

Prerequisites:

  • Python 3.8+
  • Recommended packages: numpy, pandas, scikit-learn, matplotlib

Install dependencies (example):

pip install numpy pandas scikit-learn matplotlib

Run examples:

  • Zadanie1 (Fifteen Puzzle):

    python Zadanie1/main.py bfs RDUL path/to/input.txt path/to/solution.txt path/to/stats.txt

    See Zadanie1/README.md for detailed input/output format and research instructions.

  • Zadanie2 (MLP / Iris example):

    • Train or test a network using provided scripts (see Zadanie2/ files). For example, load a saved network and run tests from Zadanie2/test.py.
  • Zadanie3 (Regression demo):

    python Zadanie3/app.py

    This will run a Decision Tree regressor on data.csv and show learning curves and trees.


πŸ§ͺ Notes & Usage Tips

  • Input/output formats and usage examples for the Fifteen Puzzle are documented in Zadanie1/README.md.
  • The MLP implementation (Zadanie2/mlp.py) includes logging and save/load options; inspect mlp.py and test.py for usage patterns.

πŸ“– How to Contribute

  • Add tests or small improvements via pull requests.
  • Keep changes well-documented and include example invocations for any new scripts.

This README was generated to provide a concise overview and usage guide for the course project.

About

A repository dedicated to projects and topics in Artificial Intelligence and Expert Systems.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages