Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 31 additions & 7 deletions rabbit/fitter.py
Original file line number Diff line number Diff line change
Expand Up @@ -125,8 +125,6 @@ def __init__(self, indata, poi_model, options, do_blinding=False):

self.parms = np.concatenate([self.poi_model.pois, self.indata.systs])

self.init_frozen_params(options.freezeParameters)

# tf variable containing all fit parameters
thetadefault = tf.zeros([self.indata.nsyst], dtype=self.indata.dtype)
if self.poi_model.npoi > 0:
Expand All @@ -136,6 +134,15 @@ def __init__(self, indata, poi_model, options, do_blinding=False):

self.x = tf.Variable(xdefault, trainable=True, name="x")

# for freezing parameters
self.frozen_params = []
self.frozen_params_mask = tf.Variable(
tf.zeros_like(self.x, dtype=tf.bool), trainable=False, dtype=tf.bool
)

self.frozen_indices = np.array([])
self.freeze_params(options.freezeParameters)

# observed number of events per bin
self.nobs = tf.Variable(
tf.zeros_like(self.indata.data_obs), trainable=False, name="nobs"
Expand Down Expand Up @@ -294,12 +301,26 @@ def load_fitresult(self, fitresult_file, fitresult_key):
self.x.assign(xvals)
self.cov.assign(tf.constant(covval))

def init_frozen_params(self, frozen_parmeter_expressions):
self.frozen_params = match_regexp_params(
frozen_parmeter_expressions, self.parms
def update_frozen_params(self):
new_mask_np = np.isin(self.parms, self.frozen_params)

self.frozen_params_mask.assign(new_mask_np)
self.frozen_indices = np.where(new_mask_np)[0]

def freeze_params(self, frozen_parmeter_expressions):
self.frozen_params.extend(
match_regexp_params(frozen_parmeter_expressions, self.parms)
)
self.update_frozen_params()

def defreeze_params(self, unfrozen_parmeter_expressions):
unfrozen_parmeter = match_regexp_params(
unfrozen_parmeter_expressions, self.parms
)
self.frozen_params_mask = np.isin(self.parms, self.frozen_params)
self.frozen_indices = np.where(self.frozen_params_mask)[0]
self.frozen_params = [
x for x in self.frozen_params if x not in unfrozen_parmeter
]
self.update_frozen_params()

def init_blinding_values(self, unblind_parameter_expressions=[]):

Expand Down Expand Up @@ -1265,6 +1286,9 @@ def _compute_yields_noBBB(self, full=True):
poi = self.get_blinded_poi()
theta = self.get_blinded_theta()

poi = tf.where(
self.frozen_params_mask[: self.poi_model.npoi], tf.stop_gradient(poi), poi
)
theta = tf.where(
self.frozen_params_mask[self.poi_model.npoi :],
tf.stop_gradient(theta),
Expand Down