Official implementation of iRADNet (inverse Radon transform Network) in paper Deep Algorithm Unrolling for Seismic Migration based on the CRISP-RF 1.
With sparse Radon transform (SRT), we intend to approximate the following optimization problem:
where
We introduce iRADNet by unrolling the SRT-(F)ISTA2 iterations
into a deep learning model (see Figure 1, plug-in structure
being LISTA-CP3, a variant of LISTA4) to learn the mapping
# train iRADNet (LISTA-CP), using synthetic data and SNR=2
python crisprf/job/run_lista.py --train --model SRT_LISTA_CP --snr 2
# evaluate iRADNet (LISTA-CP), using synthetic data and SNR=2
python crisprf/job/run_fista.py --eval --model SRT_LISTA_CP --snr 2
# evaluate iRADNet (LISTA-CP), using synthetic data and SNR=inf
python crisprf/job/run_fista.py --eval --model SRT_LISTA_CP@inproceedings{wang_deep_2025,
address = {College Park, MD, USA},
title = {Deep {Algorithm} {Unrolling} for {Seismic} {Migration}},
copyright = {https://doi.org/10.15223/policy-029},
isbn = {9798331515102},
url = {https://ieeexplore.ieee.org/document/11091556/},
doi = {10.1109/CISA64343.2025.11091556},
urldate = {2025-08-26},
booktitle = {2025 {IEEE} {Conference} on {Computational} {Imaging} {Using} {Synthetic} {Apertures} ({CISA})},
publisher = {IEEE},
author = {Wang, Meng and Olugboji, Tolulope},
month = jun,
year = {2025},
pages = {1--5},
}Footnotes
-
https://doi.org/10.1093/gji/ggad447 "On the detection of upper mantle discontinuities with radon-transformed receiver functions (CRISP-RF)" ↩
-
https://doi.org/10.1088/1742-2132/13/4/462 "Prestack seismic data regularization using a time-variant anisotropic Radon transform" ↩
-
https://doi.org/10.48550/arXiv.1808.10038 "Theoretical linear convergence of unfolded ISTA and its practical weights and thresholds" ↩
-
https://dl.acm.org/doi/10.5555/3104322.3104374 "Learning fast approximations of sparse coding" ↩

