3D Deconvolution with Pyxu library. In particular, it includes the Goujon accelerated Richardson-Lucy (GARL). Please read the extended documentation (GARL PDF file) to know more about the method.
Before running pip install, please install via conda some packages beforehand (avoid incompatibilities):
conda install -c conda-forge numpy scipy
You can then install pyxudeconv via pip (please look at the next section first):
pip install pyxudeconv
or with GPU compatibility via pip (e.g., CUDA 12.x):
pip install pyxudeconv[gpu12]
- Please install torch with the correct CUDA version via the official pytorch website and via conda.
To install latest development version :
pip install git+https://github.com/ThanhAnPham/pyxudeconv.git
After the package import, the deconvolution is performed by the function deconvolve which expects the parameters (namespace). To modify the parameters, there are two ways
- Load the default parameters via
get_paramand modify each field of interestimport pyxudeconv par = pyxudeconv.get_param() par.psfpath = '/home/tampham/3DWCR/data/simulated/psf_sample_calib_nv_32_coi_2.ome.tif' par.datapath = '/home/tampham/3DWCR/data/simulated/g_sample_calib_nv_32_coi_2.ome.tif' par.phantom = '/home/tampham/3DWCR/data/simulated/phantom_sample_calib_nv_32_coi_2.ome.tif' par.fres = '/home/tampham/yo' par.saveIter = [10] par.methods = ['RL','GARL','Tikhonov'] imdeconv = pyxudeconv.deconvolve(par) - Change the json file and load it.
import pyxudeconv par = pyxudeconv.get_param(param_file='./my_params.json') imdeconv = pyxudeconv.deconvolve(par)
Note that par.psfpathand par.datapath can be numpy.ndarray already loaded in the python code
par.psfpath = mypsf #numpy.ndarray
par.datapath = mydata #numpy.ndarray
The main function deconvolve can be called as a command-line with arguments or via a bash file (see main_example.sh or main_calibration.sh) with the option -m.
Two arguments are important if applied on your own data
datapath: Path to the data to deconvolve OR if ran through a python script it can be a ndarray itselfpsfpath: Path to the point-spread function OR if ran through a python script it can be a ndarray itself
Currently supported file formats
.czi: Carl Zeiss files.tif: Expected order of the dimension (Time, Views, Channels, Z, Y, X). Note that the file is first fully loaded, then the region of interest is kept for further processing. One drawback is that the RAM memory usage may be temporarily large.
An example of calling the script with a command-line
python -m pyxudeconv.deconvolve --fres '../res/donuts' --gpu 0 --datapath '../data/real_donut/data.tif' --psfpath '../data/real_donut/psf.tif' --saveIter 10 10 10 10 10 --nviews 1 --methods 'RL' 'GARL' --Nepoch 50 --bufferwidth 20 10 10 --pxsz 79.4 79.4 1000 --bg 0 --psf_sz -1 -1 128 128 --roi 0 0 150 150 --config_GARL 'widefield_params'
If Goujon accelerated Richardon-Lucy (GARL) and/or GPU will be used, please install torch1 according to your case. For instance, If the GPU CUDA version is 12.1, the conda environment can be created in a terminal with the commands
conda create -n pyxudeconv python=3.11 pytorch=2.4.1 pytorch-cuda=12.1 tifffile numpy scipy matplotlib -c pytorch -c nvidia -c conda-forgeconda activate pyxudeconvpip install pyxu[complete]
To use GARL, call python -m pyxudeconv.deconvolve with the argument --methods 'GARL'.
To run over different hyperparameters, you can add the argument --config_GARL 'full_path/your_config_file.json'.
Note: Each parameter must be a list of values, even if it is a single-valued list.
For instance, here is an example of a .json config file
{
"WCRnet": ["pyxudeconv/trained_models/3Dtubes/"],
"epochoi": [40180],
"lmbd": [0.1, 0.5],
"sigWC": [0.1, 0.5]
}
Alternatively, one can set a range of values for a parameter (e.g., lmbd) as follows
{
"WCRnet": ["pyxudeconv/trained_models/3Dtubes/"],
"epochoi": [40180],
"lmbd_min": 0.1,
"lmbd_max": 0.5,
"lmbd_nsteps": 2,
"sigWC": [0.1, 0.5]
}
The function simulatecan simulate measurements obtained from a phantom defined by --phantom your_phantom_file convolved with a PSF defined by --psfpath your_psf_file. Future releases may change the organisation of the simulation part.
Contributions are very welcome. Tests can be run with tox, please ensure the coverage at least stays the same before you submit a pull request.
Distributed under the terms of the MIT license, "pyxudeconv" is free and open source software
If you encounter any problems, please file an issue along with a detailed description.
Footnotes
-
21/10/2024, there might be an incompatiblity with the
sympy(==1.13.1)package version required bypytorch >= 2.5.0. Either downgradesympyto1.13.1(but may create incompatibilities withpyxu) or installpytorch=2.4.1. ↩