This repository contains the code and documentation for SemEval Task 11 (Codabench) for "Behind the Secrets of LLMs".
- Training Script:
commands.py - Utilities:
utilities.py - Human Evaluation Webapp:
human_eval.py - Evaluation Script:
human_eval_evaluation.py - Interactive SHAP Visualization:
shap_text_plot.html - Final Results:
results/final_eval - Training Configs:
/config - SBATCH Scripts:
/scripts - Additional Legacy Plots and Resources
Clone the repository and initialize Git LFS:
git clone git@github.com:TUD-Semeval-Group/Semeval_Task.git
git lfs install
git lfs pull- SSH on Hpc
- Load modules (has to be done only for initial setup)
- Create workspace (has to be done only for initial setup)
- Link workspace (has to be done only for initial setup)
- Create Venv in workspace (has to be done only for initial setup)
- Run interactive job (you will be redirected to a compute node)
- Activate Venv
- Run python script
ssh <zih-login>@login2.alpha.hpc.tu-dresden.de
module load release/24.04
module load GCCcore/11.3.0
module load Python/3.10.4
module save
Workspace will be up for 100 days.
ws_allocate <name> 100 -r 7 # more info: ws_allocate -h
ln -s <ws_link> <name>
virtualenv <myvenv>
. myvenv/bin/activate
pip install -r requirements.txt
srun --ntasks=1 --cpus-per-task=1 --time=4:00:00 --mem-per-cpu=8000 --pty --nodes=1 --account=p_scads_llm_secrets --gres=gpu:1 bash -l
activate venv inside job and work inside the workspace with running venv
run batch job via sbatch ...