Min-Yuan Tseng, Yen-Chung Chen, Yi-Lun Lee, Wei-Sheng Lai, Yi-Hsuan Tsai, Wei-Chen Chiu
Winter Conference on Applications of Computer Vision (WACV), 2021
[Paper] [Video] [Supplementary]
Python3.6
PyTorch 1.1.0
CUDA 9.0
Other dependencies are listed in environment.yml
Use conda to create the environment and activate it:
conda env create -f environment.yml
conda activate dual-stream
We use lmdb as dataset to reduce time for loading image.
You can download processed vimeo90k lmdb files from this link.
If you want to process the original vimeo90k dataset on your own, you can use dataset/create_lmdb_mp.py.
Download the pretrained weights (ESPCN.pth, SuperSloMo.pth and STSR_best.pth) from this link and place them in pretrained, then run:
python test_model.py --data_root ./data/vimeo90k/ --sr_type ESPCN --it_type SSM --two_mask --forward_MsMt --forward_F --forward_R --stsr_weight ./pretrained/STSR_best.pth --sr_weight ./pretrained/ESPCN.pth --it_weight ./pretrained/SuperSloMo.pth --batch_size 24
run:
python train.py --data_root ./data/vimeo90k/ --sr_type ESPCN --it_type SSM --two_mask --forward_MsMt --forward_F --forward_R --batch_size 24
If you find this work useful for your research, please cite:
@inproceedings{tseng21wacv,
title = {Dual-Stream Fusion Network for Spatiotemporal Video Super-Resolution},
author = {Min-Yuan Tseng and Yen-Chung Chen and Yi-Lun Lee and Wei-Sheng Lai and Yi-Hsuan Tsai and Wei-Chen Chiu},
booktitle = {IEEE Winter Conference on Applications of Computer Vision (WACV)},
year = {2021}
}
Based on different architectures, we modify the source codes from SuperSloMo, DAIN and SAN. We also use the script for processing images to lmdb from EDVR.