Dual-Sampling Noise2Noise: Efficient Single Image Denoising
- python == 3.8
- pytorch == 2.0.1
- skimage == 0.19.0
- tqdm == 4.50.2
python main.py \
--image_folder (your nosiy images folder, type = str) \
--device (cuda or cpu, type = str, default = 'cuda') \
--max_epoch (max number of epochs, type = int, default = 10000) \
--lr (learning rate, type = float, default = 0.001) \
--step_size (step size of changing the learning rate, type = int, default = 9000) \
--gamma (factor by which learning rate decays, type = float, default = 0.5) \
--embedding (image convolution embedding channels, type = int, default = 48) \
--noise_type (guass or poiss, type = str, default = 'guass') \
--noise_level (guass: σ or poiss: λ, type = int, default = 25) \
--psnr_data_save_path (psnr data save path, type = str, default = './data/25g_psnr.txt') \
--ssim_data_save_path (ssim data save path, type = str, default = './data/25g_ssim.txt') \
--loss_data_save_path (loss data save path, type = str, default = './data/25g_loss.txt')
# If you want to save psnr, ssim, and loss data, please release the save file comments under train.py:
* denosied_psnr = Test_Denosie_PSNR(self.model, noise_image, clean_image)
* denosied_ssim = Test_Denosie_SSIM(self.model, noise_image, clean_image)
* progress_bar.set_postfix(loss=loss.item(), denoising_PSNR=denosied_psnr, denosied_SSIM=denosied_ssim)
* save_to_txt(denosied_psnr, self.psnr_txt_path)
* save_to_txt(denosied_ssim, self.ssim_txt_path)
* save_to_txt(loss.item(), self.loss_txt_path)
Please note that saving the data will significantly increase the denoising processing time!@ARTICLE{10927623,
author={Bai, Jibo and Zhu, Daqi and Chen, Mingzhi},
journal={IEEE Transactions on Instrumentation and Measurement},
title={Dual-Sampling Noise2Noise: Efficient Single-Image Denoising},
year={2025},
volume={74},
number={},
pages={1-12},
keywords={Noise reduction;Noise;Noise measurement;Training;Image denoising;Image resolution;Convolutional neural networks;Computational modeling;Residual neural networks;Gaussian noise;DsNet;dual sampler;dual-sampling Noise2Noise (DS-N2N);single-image denoising method},
doi={10.1109/TIM.2025.3551427}
}