Deep learning pipeline for video-based heart rate prediction in neonates, leveraging signals from multiple body regions.
── 2.1 stmaps dataloader
── 2.2 data augmentations
── 2.3 st_maps generation
- Install dependencies
conda env create -f environment.yml
[1] A. Grafton, A. Castelblanco et al., Advancing Neonatal Care: A Deep Learning Approach for Non-Contact Heart Rate Monitoring. 2024 IEEE International Conference on E-health Networking (HealthCom), Nara, Japan, 2024, pp. 1-6, doi: 10.1109/HealthCom60970.2024.10880770.
[2] X. Niu, S. Shan, H. Han, and X. Chen, RhythmNet: End-to-end heart rate estimation from face via spatial-temporal representation,'' IEEE Trans. Imag. Proces., vol. 29, pp. 2409-2423, 2020, doi: 10.1109/TIP.2019.2947204.
The RhythmNet model and loss function scripts are modified and adapted from the RhythmNet code repository:
