Implementation of paper:
Hu, F., Wang, D., Huang, H., Hu, Y., & Yin, P. (2022). Bridging the Gap between Target-Based and Cell-Based Drug Discovery with a Graph Generative Multitask Model. Journal of Chemical Information and Modeling. https://pubs.acs.org/doi/full/10.1021/acs.jcim.2c01180
python 3.7
pytorch 1.4
rdkit 2020.03.3
numpy 1.18.1
pandas 1.0.1
scikit-learn 0.23.2
modelcontains the code implementation of MATIC modeldata/contains some example data- Using the main.py script to train the model. For example:
python main.py --train_path data/examples/multi_train.csv \
--val_path data/examples/multi_val.csv \
--test_path data/examples/multi_test.csv \
--save_dir model/ \
--batch_size 64 \
--epochs 100 \
--init_lr 0.00015 \
--early_stop_epoch 20\
--gpu 0
The SOFTWARE will be used for teaching or not-for-profit research purposes only. Permission is required for any commerical use of the Software.