Skip to content

SIAT-code/MATIC

Repository files navigation

MATIC

Implementation of paper:

Hu, F., Wang, D., Huang, H., Hu, Y., & Yin, P. (2022). Bridging the Gap between Target-Based and Cell-Based Drug Discovery with a Graph Generative Multitask Model. Journal of Chemical Information and Modeling. https://pubs.acs.org/doi/full/10.1021/acs.jcim.2c01180

Requirement

python 3.7
pytorch 1.4
rdkit 2020.03.3
numpy 1.18.1
pandas 1.0.1
scikit-learn  0.23.2

Usage

  • model contains the code implementation of MATIC model
  • data/ contains some example data
  • Using the main.py script to train the model. For example:
python main.py  --train_path data/examples/multi_train.csv \
                --val_path data/examples/multi_val.csv \
                --test_path data/examples/multi_test.csv \
                --save_dir model/ \
                --batch_size 64 \
                --epochs 100 \
                --init_lr 0.00015 \
                --early_stop_epoch 20\
                --gpu 0

Use agreement

The SOFTWARE will be used for teaching or not-for-profit research purposes only. Permission is required for any commerical use of the Software.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages