Pytheos provides a tool set for a wide range of tasks in high
pressure science:
- calculate pressure from a number of built-in pressure scales
- convert pressure scales
- propagate uncertainties properly using the
uncertaintiespackage - fit pressure-volume and pressure-volume-temperature data sets using
the
scipyandlmfitpackages - fit with a wide range of different equations and their combinations
This section describes how to download pytheos from GitHub and install it using conda. The procedure is suitable for macOS and Linux.
- Clone the GitHub repository
Clone the repository and enter the source directory:
git clone https://github.com/SHDShim/pytheos.git cd pytheos
- Create a dedicated conda environment
Create a clean conda environment to avoid dependency conflicts:
conda create -n pytheos python=3.11 -y conda activate pytheos
Python version 3.9 or newer is recommended.
- Install core dependencies
Install numerical and scientific dependencies from conda-forge:
conda install -c conda-forge numpy scipy matplotlib sympy pandas jupyter -y
If you plan to run the example notebooks, also install Jupyter support:
conda install -c conda-forge ipykernel nbconvert -y python -m ipykernel install --user --name pytheos
- Install pytheos
From the repository root (where setup.py or pyproject.toml is located),
install pytheos:
pip install .
Verify the installation:
python - <<EOF import pytheos print(pytheos.__version__) EOF
- Test the installation
Run a simple test to confirm that core functionality works:
python - <<EOF from pytheos import bm3_p, vinet_p print(bm3_p(10.0, 160.0, 4.0, 4.0)) print(vinet_p(10.0, 160.0, 4.0)) EOF
- Updating pytheos
To update pytheos to the latest version from GitHub:
cd pytheos git pull origin master pip install .
- Clean removal
To completely remove pytheos and its conda environment:
conda deactivate conda remove -n pytheos --all
Please contact Dan Shim (shdshim@gmail.com) for bug reports, comments,
and suggestions. I am happy to include new pressure scales or other
pressure scales in pytheos as well.
The pytheos package includes examples in Jupyter Notebook (under the
examples folder), which demonstrate a range of operations, calculations,
and fittings you can do with pytheos. Pytheos is designed to
support data analysis using Jupyter Notebook as well as python scripts.
Documentation is available at: https://shdshim.github.io/pytheos-docs/.
S.-H. Shim (2017) Pytheos - a python tool set for equations of state. Zenodo. http://doi.org/10.5281/zenodo.802392