Skip to content

SALT-NLP/LLMs_for_CSS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

394 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LLMs for CSS

How to run testing?

  1. Install ConvoKit
git clone https://github.com/CornellNLP/ConvoKit.git
cd ConvoKit
pip3 install -e .
  1. Download the datasets and pre-process the datasets:
python data_loader.py -d power --save_dir ./css_data/wiki_corpus
  1. Install dependencies
pip3 install -r requirements.txt
  1. Add your OpenAI Key to your environment.

  2. Usage:

python test_official_chat_css --model [MODEL_NAME_HERE] --dataset wiki_corpus

We evaluated the following models - but any model which can be loaded with HuggingFace AutoModelForSeq2SeqLM should work out of the box.

        choices=[
            "chatgpt",
            "google/flan-t5-small",
            "google/flan-t5-base",
            "google/flan-t5-large",
            "google/flan-t5-xl",
            "google/flan-t5-xxl",
            "google/flan-ul2",
            "text-davinci-001",
            "text-curie-001",
            "text-babbage-001",
            "text-ada-001",
            "text-davinci-002",
            "text-davinci-003",
        ],

File Roadmap

mappings.py - Configuration used for each dataset in the paper. Describes the type of dataset, how it should be processed from the raw format, and how the task should be formatted into a prompt from our prompting guidelines.

data_loader.py - Downloads and Converts Raw Datasets into the Seq2Seq format used by LLMs.

test_official_chat_css.py - Runs zero-shot LLM of choice - contains code for HuggingFace, ChatGPT API, and Traditional GPT API.

eval_significance.py - Computes Pairwise Bootstrap significance between the answer files of two models.

eval_agreement.py - Computes the Kappa between the LLM and the gold labels.

Citation

If you find this work useful, please cite it as follows!

@article{salt-2023-llms-for-css,
  title = {Can Large Language Models Transform Computational Social Science?},
  author = {Ziems, Caleb and Held, William and Shaikh, Omar and Chen, Jiaao and Zhang, Zhehao and Yang, Diyi},
  journal = {arXiv submission 4840038},
  year = {2023},
  month = apr,
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •