From GitHub, using the devtools package:
devtools::install_github("AlexisDerumigny/CondCopulas")-
simpA.NP: in a purely nonparametric framework -
simpA.param: assuming that the conditional copula belongs to a parametric family of copulas for all values of the conditioning variable -
simpA.kendallReg: test of the simplifying assumption based on the constancy of the conditional Kendall's tau assuming that it satisfies a regression-like equation
-
estimateNPCondCopula: nonparametric estimation of conditional copulas -
estimateParCondCopula: parametric estimation of conditional copulas -
estimateParCondCopula_ZIJ: parametric estimation of conditional copulas using (already computed) conditional pseudo-observations
A general wrapper function:
CKT.estimate: that can be used for any method of estimating conditional Kendall's tau. Each of these methods is detailed below and has its own function.
CKT.kernel: for any number of variable and with possible choice of the bandwidth
-
CKT.kendallReg.fit: fit Kendall's regression, a regression-like method for the estimation of conditional Kendall's tau -
CKT.kendallReg.predict: for prediction of the new conditional Kendall's tau (given new covariates)
-
using tree:
CKT.fit.tree: for fitting a tree-based model for the conditional Kendall's tauCKT.predict.tree: for prediction of new conditional Kendall's taus
-
using random forests:
CKT.fit.randomForest: for fitting a random forest-based model for the conditional Kendall's tauCKT.predict.randomForest: for prediction of new conditional Kendall's taus
-
using nearest neighbors:
CKT.predict.kNN: for several numbers of nearest neighbors
-
using neural networks:
CKT.fit.nNets: for fitting a neural networks-based model for the conditional Kendall's tauCKT.predict.nNets: for prediction of new conditional Kendall's taus
-
using GLM:
CKT.fit.GLM: for fitting a GLM-like model for the conditional Kendall's tauCKT.predict.GLM: for prediction of new conditional Kendall's taus
-
CKT.hCV.Kfolds: for K-fold cross-validation choice of the bandwidth for kernel smoothing -
CKT.hCV.l1out: for leave-one-out cross-validation choice of the bandwidth for kernel smoothing -
CKT.KendallReg.LambdaCV: cross-validated choice of the penalization parameter lambda -
CKT.adaptkNN: for a (local) aggregation of the number of nearest neighbors based on Lepski's method
Test of the assumption that the conditioning Borel subset has no influence on the conditional copula
bCond.simpA.param: assuming that the copula belongs to a parametric family
-
bCond.pobs: computation of the conditional pseudo-observations$F_{1|A(i)}(X_{i,1} | A(i))$ and$F_{2|A(i)}(X_{i,2} | A(i))$ for every$i=1, \dots, n$ . -
bCond.estParamCopula: estimation of a conditional parametric copula, i.e. for every set$A$ , a conditional parameter$\theta(A)$ is estimated.
Derumigny, A., & Fermanian, J. D. (2017). About tests of the “simplifying” assumption for conditional copulas. Dependence Modeling, 5(1), 154-197.
Derumigny, A., & Fermanian, J. D. (2019). A classification point-of-view about conditional Kendall’s tau. Computational Statistics & Data Analysis, 135, 70-94.
Derumigny, A., & Fermanian, J. D. (2019). On kernel-based estimation of conditional Kendall’s tau: finite-distance bounds and asymptotic behavior. Dependence Modeling, 7(1), 292-321.
Derumigny, A., & Fermanian, J. D. (2020). On Kendall’s regression. Journal of Multivariate Analysis, 178, 104610.