A content-based movie recommender system built with Python that suggests movies based on similarities between movies using the TMDB dataset.
- Content-based movie recommendations using cosine similarity
- Built with Python and popular data science libraries
- Uses TMDB 5000 Movies Dataset
- Interactive Jupyter notebook for data exploration
- Simple web interface using Streamlit
.
├── app.py # Flask web application
├── movie_list.pkl # Preprocessed movie data
├── similarity.pkl # Computed similarity matrix
├── movie_recommender.ipynb # Data analysis notebook
├── data/
│ ├── tmdb_5000_movies.csv
│ └── tmdb_5000_credits.csv
├── .env # Environment variables
└── .gitignore # Git ignore file
- Clone the repository
git clone https://github.com/yourusername/movie-recommender-system-tmdb-dataset.git
cd movie-recommender-system-tmdb-dataset- Create and activate virtual environment
python -m venv venv
source venv/bin/activate # For Linux/Mac
venv\Scripts\activate # For Windows- Install required packages
pip install -r requirements.txt- Run the Flask web application:
python app.py- Open the Jupyter notebook for data analysis:
jupyter notebook movie_recommender.ipynbThe project uses the TMDB 5000 Movie Dataset from Kaggle, which includes:
- Movie metadata (titles, genres, keywords, etc.)
- Movie credits data (cast and crew information)
- Fork the repository
- Create your feature branch (
git checkout -b feature/AmazingFeature) - Commit your changes (
git commit -m 'Add some AmazingFeature') - Push to the branch (
git push origin feature/AmazingFeature) - Open a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.
Your Name - @yourusername Project Link: https://github.com/yourusername/movie-recommender-system-tmdb-dataset