-
Notifications
You must be signed in to change notification settings - Fork 5
3. Example parameters
tschaefers edited this page Jul 8, 2021
·
2 revisions
params:
method:
label: "method -- experimental method"
choices: ['384plate', 'droplet']
value: '384plate'
kb.dir:
label: "kb.dir -- directory containing kb-python output"
value: /home/user/experiment/results/kallistobus/
barcode_file:
label: "barcode_file -- .tab delimited file with 2-col layout for plate based methods (with DNA barcode and well-id)"
value: /home/user/experiment/barcode_384.tab
mt_genes_file:
label: "mt_genes_file -- .txt file containing one column with mitchondrial genes"
value: /home/user/experiment/genomes/genome_addons/MT_genes.txt
meta_data:
label: "meta_data -- .csv file containing cell meta data. Alternative for extract_meta_columns"
value: ../data/examples/sample_meta_example.csv
meta_type:
label: "meta_data_level -- type of meta data"
choices: ["sample", "cell","names","default"]
value: sample
extract_meta_columns:
label: "extract_meta_columns -- extracts meta data from cell names (name fields separated by '_'). Alternative for meta_data."
value: ""
resultsdir:
label: "resultsdir -- output directory for qc files"
value: ../output
meta_group_id:
label: "meta_group_id -- combine meta data fields for plotting, creates variable combined_id (separate multiple values by comma)"
value: ""
lab_col:
label: "lab_col -- meta data field used for QC plot labels (for instance: combined_id)"
value: library
umap_cols:
label: "umap_cols -- meta data fields used for Seurat's RunUMAP plot labels (separate multiple values by comma)"
value: library,timepoint,combined_id
confounders_to_test:
label: "confounders_to_test -- meta data variables used for confounder testing (separate multiple values by comma)"
value: library
isvelo:
label: "is_velo -- velocity workflow"
value: true
run.sct:
label: "run.sct -- perform SCTransform normalization, FALSE runs log(p1) NormalizeData, HVG selection and ScaleData in Seurat"
value: true
run.jackstraw:
label: "run.jackstraw -- perform Jackstraw analysis (does not work with SCTransform)"
value: false
add.spikes.ercc:
label: "add.spikes.ercc -- use ERCC RNA spike-ins (if present)"
value: true
ercc_pct_max:
label: "ercc_pct_max -- max percentage ERCC spike-ins counts"
value: 20
add.spikes.mt:
label: " add.spikes.mt -- use mitochondrial gene-list for qc"
value: true
mt_pct_max:
label: "mt_pct_max -- max percentage mitochondrial genes counts"
value: 50
gene_tresh:
label: "gene_tresh -- gene filter: threshold for genes considered expressed"
value: 1
amount_cells_expr:
label: "amount_cells_expr -- gene filter: threshold for minimal amount of cells a gene should be expressed in"
value: 2
total_counts_tresh:
label: "total_counts_tresh -- cell filter: threshold for minimal amount of UMI counts detected in a cell"
value: 1000
total_feat_tresh:
label: "total_feat_tresh -- cell filter: threshold for minimal amount of features (genes) detected in a cell"
value: 500
nhvg:
label: "nhvg -- number of Highly Variable Genes, used in Seurat's FindVariableFeatures"
value: 2000
cell_id_filter_option:
label: "cell_id_subset_filter -- filter options for cell_id_subset"
choices: ['in', 'out', 'none']
value: in
cell_id_filter_pattern:
label: "cell_id_subset -- cell ids to include/exclude based on cell_id_subset_filter"
value: "EHT"
pcs_for_overview:
label: "pcs_for_overview -- principal components for overview in combined umap plot, runs UMAP for PC 1-value"
value: '5,10,13,20,30,40'
pcs_max_hvg:
label: "pcs_max_hvg -- max number of principal components to visualize"
value: 70
vars_to_regress_sf:
label: "vars_to_regress -- variables to regress out (spliced, for example: nCount_sf,nFeature_sf)"
value: nCount_sf,nFeature_sf
vars_to_regress_uf:
label: "vars_to_regress -- variables to regress out (unspliced, for example: nCount_uf,nFeature_uf))"
value: nCount_uf,nFeature_uf
old_col_pattern:
label: "old_col_pattern -- old column substring to replace by new_column_pattern"
value: ""
new_col_pattern:
label: "new_col_pattern -- new column substring to replace old_column_pattern"
value: ""