Skip to content

Quantum optimization sandbox for drug repurposing: compare QAOA/VQE vs classical baselines with scripted docking (AutoDock Vina + RDKit) and reproducible workflows.

Notifications You must be signed in to change notification settings

RahatulAshakin/ad-quantum-repurpose

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AD Quantum Repurposing (Proposal 1 Baseline)

Goal: classical docking + BBB heuristics + quantum demo to scaffold a quantum-enhanced repurposing pipeline for Alzheimer’s disease (AD).

What’s in this repo

  • data/raw/ – PDB 4DVF and seed SMILES
  • data/processed/ – prepared receptor & ligands (PDBQT/SDF)
  • results/docking/ – docking logs/poses + docking_results.csv
  • results/reports/ranking.md, ranking_table.csv, docking_bar.png, vqe_demo.md
  • results/quantum/vqe_h2.json
  • scripts/ – helper scripts (incl. 06_vqe_workflow.py)
  • envs/wsl_adquant_q.yml – WSL environment for Qiskit/PySCF

Methods (summary)

  • Protein prep: PDBFixer/OpenMM on 4DVF; box center [3.061, −0.128, 17.532], size [22,22,22] Å.
  • Ligands: 10 CNS-approved drugs; RDKit for 3D + MW/PSA/cLogP; OpenBabel for PDBQT & Gasteiger charges.
  • Docking: smina (Vina score); parsed best-pose energies; composite rank = binding + BBB features.
  • Quantum demo: Qiskit Nature VQE (H₂) to validate the quantum stack; outputs JSON + report.

Results (top-10)

Rank Ligand Affinity (kcal/mol) MW PSA cLogP BBB Composite
1 donepezil −8.2 392.21 42.01 3.856 2.2470
2 galantamine −7.6 278.09 39.44 4.245 1.5164
3 nilvadipine −7.0 433.05 78.51 4.464 0.7858
4 fluoxetine −6.7 259.14 35.25 3.796 0.4205
5 sertraline −6.6 283.09 12.03 4.467 0.2987
6 riluzole −6.4 253.02 76.72 2.140 0.0552
7 rivastigmine −6.1 221.11 38.77 2.036 −0.3101
8 memantine −5.9 181.18 26.02 3.084 −0.5537
9 rasagiline −5.7 191.11 12.03 2.175 −0.7972
10 selegiline −5.4 173.12 12.03 2.036 −1.1625

Highlights

  • 10/10 ligands docked and parsed (100% success).
  • Best vs worst |ΔE| improvement: ~52% (donepezil vs selegiline).
  • Best vs median |ΔE| improvement: ~26% (donepezil vs median).
  • All pass BBB heuristics used here (CNS-plausible).

See results/reports/ranking.md and results/reports/docking_bar.png.

Quantum check

VQE demo for H₂ succeeded (see results/quantum/vqe_h2.json, results/reports/vqe_demo.md). This validates Qiskit/PySCF on WSL and is a placeholder for target-specific quantum simulations we’ll add next.

Limitations

Rigid receptor; approximate scoring; single target; simple composite score; no experimental validation yet.

Next steps

  • Rescoring (RFScore/MMGBSA), interaction analysis, ensemble docking.
  • Add a second AD target (e.g., tau) for polypharmacology.
  • Swap demo H₂ for ligand-fragment active-space VQE.
  • Plan organoid/iPSC validation with ≥30% reduction thresholds for Aβ/p-tau.

About

Quantum optimization sandbox for drug repurposing: compare QAOA/VQE vs classical baselines with scripted docking (AutoDock Vina + RDKit) and reproducible workflows.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published