🏠 Home Page
|
✨ Features Overview
|
🍎 Calorie Estimator
|
🩸 Blood Donor Finder
|
🔬 Skin Disease Classification
|
🔍 Image Search & Semantic Search
|
A comprehensive Next.js application designed specifically for expectant mothers, providing essential healthcare services including medication tracking, prescription analysis, skin disease classification, blood donor location, and AI-powered calorie estimation.
| Service | Description |
|---|---|
| 🏥 Medicine Store | Access pregnancy-safe medications database |
| 📅 Medicine Dates | Track medication expiry dates and set reminders |
| 🔬 Skin Disease Classification | AI-powered skin condition analysis |
| 📋 Prescription Analyzer | Digital prescription analysis and management |
| 🍎 Calorie Estimator | AI-powered food recognition and calorie estimation |
| 🩸 Find Blood Donor | Interactive map for locating blood donors |
- Next.js 15 - React framework with App Router
- React 18 - UI library with hooks
- TypeScript - Type safety
- Tailwind CSS - Utility-first CSS framework
- GSAP - Animation library
- Radix UI - Accessible component primitives
- Lucide React - Icon library
- FastAPI - Python web framework
- Hugging Face Transformers - AI model pipeline
- Spoonacular API - Nutrition data
- PIL - Image processing
- Node.js 18+ and npm
- Python 3.8+
- pip (Python package manager)
# 1. Clone the repository
git clone <repository-url>
cd momcare-latest
# 2. Install frontend dependencies
npm install
# 3. Setup Python microservices
cd momCareFoodAPI
python -m venv venv
source venv/bin/activate # Windows: venv\Scripts\activate
pip install -r requirements.txt
cd ../momCareSkinAPI
python -m venv venv
source venv/bin/activate # Windows: venv\Scripts\activate
pip install -r requirements.txt
# 4. Return to root and start the application
cd ..
npm run dev-allnpm run dev-allStarts both Next.js frontend and Python microservices concurrently.
Terminal 1 - Frontend:
npm run devTerminal 2 - Food API:
npm run start-pythonTerminal 3 - Skin API (if needed):
cd momCareSkinAPI
python main.py- POST
/api/calorie-estimate- Upload food image as multipart/form-data
- Returns:
{ "food": "Pizza", "calories_per_100g": 266, "confidence": 0.93 }
- Food API:
http://localhost:8000/api/calorie-estimate - Skin API:
http://localhost:8001/api/skin-classification
- Navigate to
/services/calorie-estimator - Upload a food image using drag-and-drop or file selector
- Click "Estimate Calories" to analyze
- View results showing detected food, calories per 100g, and confidence
- Access via sidebar navigation or service cards
- Each service provides specialized pregnancy-related healthcare tools
Create a .env.local file in the root directory:
NEXT_PUBLIC_API_URL=http://localhost:3000- Spoonacular API:
34827ffe67c644eabaa3459cefebfec6 - Hugging Face Model:
nateraw/food-101(automatic download)
Python Dependencies:
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu




