Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added Exam2021.pdf
Binary file not shown.
10 changes: 9 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
@@ -1,8 +1,16 @@
# Deep Generative Models

Course for the students of HSE University AMI program [Moscow](https://www.hse.ru/en/ba/ami/) and [Saint-Petersburg](https://spb.hse.ru/en/ba/appmath/) campuses, and [Yandex School of Data Analysis](https://yandexdataschool.com/).

Lecture: Denis Derkach

Seminars: Maksim Artemev, Artem Ryzhikov

Assistents: Aleksander Markovich, Sergey Chervontsev

Notion: https://www.notion.so/mrartemevstudents/Generative-models-HSE-4ba9fa3db4f341d98cfa2bfe2c04ad1f

TG: t (dot) me (slash) joinchat (slash) SKbwZxvozFwsT8ce

Anytask: TBA
Anytask: 775

1 change: 1 addition & 0 deletions homework/2-GAN/.gitkeep
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@

274 changes: 274 additions & 0 deletions homework/2-GAN/hw2-GAN.ipynb

Large diffs are not rendered by default.

49 changes: 49 additions & 0 deletions homework/2-GAN/model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
import torch
from torch import nn
from .utils import compute_gradient_penalty, permute_labels

class Generator(nn.Module):
def __init__(self):
super().__init__()
# YOUR CODE

def forward(self, x, labels):
# YOUR CODE


class Critic(nn.Module):
def __init__(self):
super().__init__()
# YOUR CODE

def forward(self, x):
# YOUR CODE


class StarGAN:
def __init__(self):
self.G = Generator()
self.D = Critic()

# YOUR CODE

def train(self):
self.G.train()
self.D.train()

def eval(self):
self.G.eval()
self.D.eval()

def to(self, device):
self.D.to(device)
self.G.to(device)

def trainG(self, image, label):
# YOUR CODE

def trainD(self, image, label):
# YOUR CODE

def generate(self, image, label):
# YOUR CODE
10 changes: 10 additions & 0 deletions homework/2-GAN/utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
import torch
from torch import nn


def compute_gradient_penalty(critic, real_samples, fake_samples):
# YOUR CODE
return gradient_penalty

def permute_labels(labels):
# YOUR CODE
1 change: 1 addition & 0 deletions homework/3-NF_VAE/.gitkeep
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@

195 changes: 195 additions & 0 deletions homework/3-NF_VAE/hw3-VAENF.ipynb

Large diffs are not rendered by default.

63 changes: 63 additions & 0 deletions homework/4-Glow/hw4.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"В данной домашке предлагается воспроизвести результаты статьи [ArXiv:2006.08545](https://arxiv.org/abs/2006.08545), изучающей поведение NF на Out-Of-Distribution (OOD) данных (т.е. тех данных, которые поток никогда не видел и которые находятся за пределом распределения обучающей выборки)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## (0.3 балла) Обучить Glow на CelebA, добиться нормального качества генерируемых картинок\n",
"\n",
"При невыполнении этого пункта все остальные пункты зануляются"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## (0.4 балла) Построить гистограмму лайклихудов для обученного в предыдущем пункте потока для данных CelebA (train), CelebA (test) и SVHN (OOD)\n",
"Замечание: из каждого датасета достаточно взять только некоторую долю объектов, достаточную для построения гистограммы "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## (0.3 балла) Сравнить картинки из OOD (SVHN) с наибольшим предсказанным лайклихудом с картинками обучающего датасета (CelebA) с наименьшим лайклихудом. Что можно сказать об этих картинках? Почему лайклихуд первых может быть выше?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Binary file added lectures/6-VAEGAN.pdf
Binary file not shown.
Binary file added lectures/7-AR.pdf
Binary file not shown.
Binary file added lectures/8-NF.pdf
Binary file not shown.
Binary file added lectures/9-NF2.pdf
Binary file not shown.
Binary file added lectures/GenModels_Applications.pdf
Binary file not shown.
Binary file not shown.
Binary file added lectures/Generative Models for Text Synthesis.pdf
Binary file not shown.
Loading