Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion R/Normalization.R
Original file line number Diff line number Diff line change
Expand Up @@ -159,7 +159,7 @@ tidyCovariateData <- function(covariateData,
inner_join(covariateData$valueCounts, by = "covariateId") %>%
select(.data$analysisId, .data$covariateId, n) %>%
collect()
valueCounts <- valueCounts[order(valueCounts$analysisId, -valueCounts$n), ]
valueCounts <- valueCounts[order(valueCounts$analysisId, -valueCounts$n, valueCounts$covariateId), ]
deleteCovariateIds <- c(deleteCovariateIds, valueCounts$covariateId[!duplicated(valueCounts$analysisId)])
ignoreCovariateIds <- valueCounts$covariateId
ParallelLogger::logInfo("Removing ", length(deleteCovariateIds), " redundant covariates")
Expand Down
30 changes: 30 additions & 0 deletions tests/testthat/test-tidyCovariates.R
Original file line number Diff line number Diff line change
Expand Up @@ -93,3 +93,33 @@ test_that("tidyCovariateData on Temporal Data", {
tidy <- tidyCovariateData(covariateData)
expect_equal(length(pull(tidy$analysisRef, analysisId)), length(pull(covariateData$analysisRef, analysisId)))
})

test_that("Removal of redundant covariates is reproducible", {
# Create data with two covariates from the same analysis, with equal prevalence:
covariates <- tibble(
covariateId = rep(c(1,2), 5),
rowId = seq_len(10),
covariateValue = 1
)
covariateRef <- tibble(
covariateId = c(1,2),
analysisId = c(1, 1)
)
metaData <- list(populationSize = 10)
covariateData <- Andromeda::andromeda(
covariates = covariates,
covariateRef = covariateRef
)
attr(covariateData, "metaData") <- metaData
class(covariateData) <- "CovariateData"

# Repeat removal of redundant covariates multiple times to evaluate consistency:
covariateIds <- c()
for (i in seq_len(10)) {
tidy <- tidyCovariateData(covariateData, minFraction = 0, normalize = FALSE, removeRedundancy = TRUE)
covariateIds[i] <- tidy$covariates |>
distinct(covariateId) |>
pull()
}
expect_equal(length(unique(covariateIds)), 1)
})
Loading