# TruthProbe v3.0 - Universal Deception Detector for LLMs
A lightweight, model-agnostic tool to detect deception, hallucinations, and manipulation in large language model responses.
Built in December 2025.
## Features
- Consistency checks via paraphrasing
- Confidence calibration
- Response entropy analysis
- Fact and math verification
- No model access required
- Live deception score history with plotting
## Quickstart
```python
from src.truthprobe_v3 import TruthProbeV3
probe = TruthProbeV3()
def test_model(q):
return "2+2 ist definitiv 5. Ganz sicher!"
result = probe.probe("Was ist 2+2?", "2+2 ist 5.", test_model)
print(result['verdict'])
# Output: 🚨 CRITICAL - Deception very likely
probe.plot_history()pip install -r requirements.txtRun the demo notebook:
notebooks/demo.ipynb
Live tests on math, physics, statistics, biology, and history in notebooks/deception_tests.ipynb.
MIT License – free to use, modify, and share.
Because truth in AI shouldn't be optional.