Accuracy over Speed โข Local-First โข Privacy-Preserving
AVA v4.2 implements the Sentinel Architecture โ a state-of-the-art cognitive system
that prioritizes verified accuracy over probabilistic token generation.
|
Unlike standard LLMs that "guess" tokens, AVA implements:
|
Your data never leaves your machine:
|
|
Designed for 4GB VRAM GPUs:
|
Built on cutting-edge research:
|
AVA's four-stage cognitive loop ensures accurate, verified responses:
โโโโโโโโโโโโโโโโโโโ
โ USER QUERY โ
โโโโโโโโโโฌโโโโโโโโโ
โ
โโโโโโโโโโโโโโโโโโโโงโโโโโโโโโโโโโโโโโโโ
โ STAGE 1: PERCEPTION โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ Embedding โ KL Divergence โ โ
โ โ โ Surprise Score โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโคโโโโโโโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโโโโโโโโโงโโโโโโโโโโโโโโโโโโโ
โ STAGE 2: APPRAISAL โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ Active Inference Engine โ โ
โ โ G(ฯ) = -Pragmatic โ โ
โ โ - Epistemic + Effort โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโคโโโโโโโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโ
โ โ โ
โผ โผ โผ
โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ
โ MEDULLA โ โ SEARCH โ โ CORTEX โ
โ Fast Path โ โ Tools โ โ Deep Path โ
โ โโโโโโโโโ โ โ โโโโโโโโโ โ โ โโโโโโโโโ โ
โ gemma3:4b โ โ DDG/Google โ โ qwen2.5:32b โ
โ <200ms โ โ Bing/Brave โ โ 3-30s โ
โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ
โ โ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโโโโโโโโโงโโโโโโโโโโโโโโโโโโโ
โ STAGE 4: LEARNING โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ Titans Memory Update โ โ
โ โ M_t = M_{t-1} - ฮทโฮธL โ โ
โ โ (Surprise-Weighted) โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโคโโโโโโโโโโโโโโโโโโโ
โ
โโโโโโโโโโดโโโโโโโโโ
โ VERIFIED OUTPUT โ
โโโโโโโโโโโโโโโโโโโ
# 1. Install Ollama (required)
# Download from: https://ollama.ai
# 2. Pull models
ollama pull gemma3:4b # Fast responses
ollama pull nomic-embed-text # Surprise calculation
ollama serve # Start server|
๐ฆ Option A: Download Release (Recommended) Download the installer from Releases:
|
๐ง Option B: Build from Source git clone https://github.com/NAME0x0/AVA.git
cd AVA/ui
npm install
npm run tauri build |
# Desktop App (GUI)
./AVA.exe # or double-click
# Terminal UI (Power Users)
cd AVA && pip install -e .
python -m tui.app
# API Server Only
python server.py # http://127.0.0.1:8085| Interface | Description | Launch |
|---|---|---|
| ๐ฅ๏ธ Desktop App | Native GUI with neural visualization | AVA.exe |
| โจ๏ธ Terminal UI | Keyboard-driven power-user interface | python -m tui.app |
| ๐ HTTP API | REST + WebSocket for integrations | http://127.0.0.1:8085 |
| Key | Action | Key | Action |
|---|---|---|---|
Ctrl+K |
Command palette | Ctrl+S |
Force search |
Ctrl+L |
Clear chat | Ctrl+D |
Deep thinking |
Ctrl+T |
Toggle metrics | Ctrl+E |
Export chat |
F1 |
Help | Ctrl+Q |
Quit |
# Health check
curl http://127.0.0.1:8085/health
# Send message
curl -X POST http://127.0.0.1:8085/chat \
-H "Content-Type: application/json" \
-d '{"message": "Explain quantum computing"}'
# Get cognitive state (entropy, surprise, varentropy)
curl http://127.0.0.1:8085/cognitive
# WebSocket streaming
wscat -c ws://127.0.0.1:8085/ws| Endpoint | Method | Description |
|---|---|---|
/health |
GET | Server health & Ollama status |
/chat |
POST | Send message, get response |
/ws |
WS | Real-time bidirectional chat |
/cognitive |
GET | Entropy, surprise, confidence |
/belief |
GET | Active Inference belief state |
/memory |
GET | Memory statistics |
AVA/
โโโ ๐ config/ # Configuration files
โ โโโ cortex_medulla.yaml # Main config
โ โโโ tools.yaml # Tool definitions
โโโ ๐ docs/ # Documentation
โ โโโ GETTING_STARTED.md # Quick start guide
โ โโโ ARCHITECTURE.md # Sentinel architecture
โ โโโ API_EXAMPLES.md # API reference
โโโ ๐ src/ # Python source (TUI/tools)
โ โโโ core/ # Cortex-Medulla system
โ โโโ hippocampus/ # Titans memory
โ โโโ tools/ # Tool implementations
โโโ ๐ tui/ # Terminal UI (Textual)
โโโ ๐ ui/ # Desktop GUI (Tauri + Next.js)
โ โโโ src-tauri/ # Rust backend
โ โโโ src/engine/ # Cognitive engine
โโโ ๐ tests/ # Test suite
โโโ ๐ README.md # You are here
Edit config/cortex_medulla.yaml:
cognitive:
fast_model: "gemma3:4b" # Medulla (fast)
deep_model: "qwen2.5:32b" # Cortex (deep)
surprise_threshold: 0.5 # Routing threshold
search:
enabled: true
min_sources: 3 # Verify with N sources
agency:
epistemic_weight: 0.6 # Curiosity level
pragmatic_weight: 0.4 # Goal focus
thermal:
max_gpu_power_percent: 15 # Safe for laptopsSee CONFIGURATION.md for all options.
| Component | Minimum | Recommended |
|---|---|---|
| GPU VRAM | 4GB | 8GB+ |
| System RAM | 8GB | 16GB+ |
| Storage | 10GB | 50GB |
| OS | Windows 10 / Linux | Windows 11 / Ubuntu 22.04 |
Component โ Resident โ Peak
โโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโผโโโโโโโโโโ
System Overhead โ 300 MB โ 300 MB
Medulla (gemma3:4b) โ 2,000 MB โ 2,000 MB
Embedding Model โ 200 MB โ 200 MB
Titans Memory โ 100 MB โ 100 MB
โโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโผโโโโโโโโโโ
Total โ 2,600 MB โ 2,600 MB
Headroom โ 1,400 MB โ 1,400 MB
โ "Ollama is not running"
# Start Ollama server
ollama serve
# Verify it's running
curl http://localhost:11434/api/tagsโ "No models available"
# Pull required models
ollama pull gemma3:4b
ollama pull nomic-embed-text
# Verify models
ollama listโ "Port 8085 already in use"
# Windows
netstat -ano | findstr :8085
taskkill /F /PID <pid>
# Linux/macOS
lsof -i :8085
kill -9 <pid>โ "Out of GPU memory"
# Use smaller model
export OLLAMA_MODEL=gemma2:2b
# Or limit GPU memory
export AVA_GPU_MEMORY_LIMIT=3000See TROUBLESHOOTING.md for more solutions.
| Document | Description |
|---|---|
| Getting Started | Installation & first steps |
| Architecture | Sentinel architecture deep-dive |
| Configuration | All configuration options |
| API Examples | HTTP/WebSocket examples |
| TUI Guide | Terminal UI reference |
| Environment Variables | All env vars |
| Troubleshooting | Common issues |
Contributions are welcome! Please read our Contributing Guide first.
# Fork the repo, then:
git clone https://github.com/YOUR_USERNAME/AVA.git
cd AVA
pip install -e ".[dev]"
pre-commit install
# Make changes, then:
pytest # Run tests
cargo test # Rust tests
git commit -m "feat: your feature"
git push origin your-branchThis project is licensed under the MIT License โ see LICENSE for details.
| Research | Technology |
|
Built with โค๏ธ for the research community
โญ Star this repo โข ๐ Report Bug โข ๐ก Request Feature
