Hypothèse exploratoire et framework pilote pour l'étude des composés à effets d'amortissement biologique
📢 Version actuelle : v1.1.2 | 📥 Télécharger la dernière release | 📖 Notes de version
Version actuelle (latest): v1.1.2
Date de release : 14 novembre 2025
DOI Zenodo : 10.5281/zenodo.17420685
Note: Extended dataset release with 25 candidate molecules (15 with complete/partial data)
Author: Tommy Lepesteur
ORCID: 0009-0009-0577-9563
License: CC-BY 4.0 (data), MIT License (code)
Repository: https://github.com/Mythmaker28/arrest-molecules
ℹ️ Cette page pointe toujours vers les assets de la dernière release. Les liens ci-dessous se mettent à jour automatiquement.
Ce projet présente une hypothèse de travail exploratoire, non un cadre établi.
- ✅ Points forts: Transparence des données, code reproductible, prédictions falsifiables, classement par confiance
⚠️ Limitations critiques:- Core dataset: 10 composés validés (échantillon pilote, reproductibilité garantie)
- Extended dataset (v1.1.2): 25 composés candidats (15 avec données complètes/partielles, 10 avec placeholders NR/EST)
- Aucune donnée expérimentale nouvelle générée
- Métriques proposées (API, EMC, NCR, etc.) ne sont pas encore validées empiriquement
- 59% des prédictions sont de confiance modérée ou faible
- Classifications basées sur des seuils arbitraires nécessitant validation
Ce travail vise à stimuler la recherche, pas à fournir des conclusions définitives.
This data package accompanies the manuscript "Molecular Arrest in Biological Regulation: A Working Hypothesis for Natural Compounds with Dampening Effects" submitted to Frontiers in Pharmacology.
The package contains:
- Core validated dataset: 10 exemplar compounds with complete data: 8 arrest agents (salvinorin A, paclitaxel, rapamycin, capsaicin, tetrodotoxin, resveratrol, ibogaine, noribogaine) + 2 oscillatory controls (psilocybin, LSD)
- 🆕 Extended candidate dataset (v1.1.2): 25 additional molecules across 6 pharmacological classes:
- KOR agonists (nalfurafine, mesyl salvinorin B, U50,488, U69,593, enadoline)
- mTOR inhibitors (everolimus, temsirolimus, ridaforolimus, zotarolimus, biolimus A9)
- GABA-A modulators (muscimol, diazepam, midazolam, zolpidem, propofol, etomidate, thiopental)
- Adenosine A1 agonists (adenosine, CPA, CCPA)
- Negative controls (curcumin, quercetin, EGCG)
- α2-adrenergic (dexmedetomidine)
- Data Quality Framework: Explicit Tier A/B/C/D classification with completeness metrics (see
Data_Package_FAIR2/DATA_QUALITY_OVERVIEW.md) - Proposed pharmacological metrics (API, EMC, NCR, AKR, PARI) — indices requiring empirical validation
- Uncertainty quantification via Monte Carlo simulation
- Confidence grading for 44 quantitative predictions (41% high confidence, 30% moderate, 30% low)
- Executable code for reproducing all calculations
- 5 extended case studies (ibogaine/noribogaine, resveratrol, fasting/breathing, psilocybin/LSD, AI memory)
- Data dictionary and usage protocols
- No new experimental data were generated. All values are literature-derived (100+ sources).
- Core dataset: 10 compounds (validated, Tier A/B) — conclusions remain tentative, reproductibility guaranteed
- Extended dataset (v1.1.2): 25 compounds with varying data completeness:
- 15 with complete or substantial data (Tier B/C: 60-90% completeness)
- 10 with partial data requiring literature extraction (Tier D: <50% completeness)
- Extended CSV not used by default in validation scripts (preserves core reproducibility)
- Metrics are proposed, not validated: API, EMC, NCR, AKR, PARI require prospective testing.
- Specific nuance for Salvinorin A: KOR pharmacology evidence is VERY HIGH, but the Level 3 arrest classification is a hypothesis; imaging evidence (fMRI/PET) exists in humans/primates yet remains limited to a few small studies, not a large, systematic program.
- Psychedelic comparators (psilocybin, LSD, ayahuasca/DMT): These are oscillatory/high-entropy comparators, NOT arrest molecules. They disrupt DMN connectivity and increase network entropy (EMC > 0), providing a contrast to the arrest candidates (EMC < 0).
- Many predictions are low-to-moderate confidence: See
Confidence_Grading_Matrix.csvandDATA_QUALITY_OVERVIEW.mdfor details.
1. Compound_Properties_Database.csv (10 rows × 36 columns) ✅ VALIDATED
- Molecular properties: formula, MW, logP, rotatable bonds, SMILES, InChI
- Binding parameters: K_i, K_d, EC₅₀, k_off
- Pharmacokinetics: t₁/₂, C_max, AUC, V_d, clearance, protein binding
- Compounds: Salvinorin A, Paclitaxel, Rapamycin, Capsaicin, Tetrodotoxin, Resveratrol, Ibogaine, Noribogaine, Psilocybin, LSD
- Literature sources: PubMed IDs for each parameter
- Status: Stable, reproducible, passes all validation tests
1.1 Compound_Properties_Experimental_Extended.csv (25 rows × 36 columns) 🆕 EXTENDED (v1.1.2)
- Same structure as core dataset but with varying data completeness
- Compounds (25 total):
- KOR agonists (5): Nalfurafine, Mesyl Salvinorin B, U50,488, U69,593, Enadoline
- mTOR inhibitors (5): Everolimus, Temsirolimus, Ridaforolimus, Zotarolimus, Biolimus A9
- GABA-A modulators (7): Muscimol, Diazepam, Midazolam, Zolpidem, Propofol, Etomidate, Thiopental
- A1 agonists (3): Adenosine, CPA, CCPA
- Negative controls (3): Curcumin, Quercetin, EGCG
- α2-adrenergic (1): Dexmedetomidine
- Purpose: Framework extension, SAR validation, class comparisons, negative controls
- Data Quality: Variable (Tier B/C/D) — 15 compounds with substantial data, 10 requiring extraction
- Completeness: 15-100% depending on compound (explicit NR/NA/ND/EST placeholders)
- Confidence: 2 HIGH, 5 MODERATE-HIGH, 6 MODERATE, 2 LOW (10 compounds pending full extraction)
- Usage:
⚠️ Not used by default validation scripts (preserves core reproducibility) - See
Data_Package_FAIR2/CANDIDATE_MOLECULES_TODO.mdfor extraction status andData_Dictionary.mdsection 1.1
1.2 DATA_QUALITY_OVERVIEW.md 🆕 Quality Framework
- Explicit Tier A/B/C/D classification for core + extended datasets
- Completeness metrics and confidence justifications
- Usage guidelines (which tiers suitable for what analyses)
- Roadmap for compound promotion and data extraction priorities
2. API_Calculations_Full.xlsx (multi-sheet workbook)
- Sheet 1: Input parameters with literature sources
- Sheet 2: Step-by-step API calculations (absolute → relative)
- Sheet 3: Monte Carlo simulation results (10,000 iterations per compound)
- Sheet 4: 95% confidence intervals
- Sheet 5: Sensitivity analysis (varying parameters ±30%)
3. Confidence_Grading_Matrix.csv (44 rows × 6 columns)
- All quantitative predictions from manuscript
- Evidence type (direct/indirect/extrapolated)
- Confidence level (high/moderate/low)
- Validation requirements
4. Experimental_Protocols_Summary.csv (3 rows × 12 columns)
- Design parameters for Experiments 1-3
- Sample sizes with power calculations
- Primary/secondary outcomes
- Success/falsification criteria
- Estimated costs and timelines
5. Python_Code_API_Monte_Carlo.py
- Fully commented Python 3.8+ script
- Calculates API with uncertainty propagation
- Requires: numpy, pandas, matplotlib
- Runtime: <10 seconds on standard laptop
- Outputs: API values with 95% CI, diagnostic plots
6. R_Code_Figures_S2.R
- Generates 3-panel oscillatory advantage figure
- Requires: ggplot2, dplyr, survival, patchwork
- Customizable parameters (colors, font sizes)
- Exports 300 dpi TIFF files
7. Data_Dictionary.md
- Complete variable definitions
- Units and measurement methods
- Abbreviations and ontology terms
- Quality control procedures
8. Literature_Search_Strategy.md
- PubMed search terms and filters
- PRISMA-style flowchart (1,247 abstracts screened → 95 retained)
- Inclusion/exclusion criteria
- Data extraction protocol
9. Case_Studies_Supplement.md ⭐ NEW
- Extended Case Study 1: Ibogaine & Noribogaine (hybrid arrest, addiction reset)
- Extended Case Study 2: Resveratrol & SIRT1 (minimal arrest, negative control)
- Extended Case Study 3: Fasting & Breathing (natural oscillators)
- Extended Case Study 4: Psilocybin & LSD (high-entropy oscillation, DMN dissolution)
- Extended Case Study 5: AI Memory (computational extension of arrest principles)
# 1. Clone & install
git clone https://github.com/Mythmaker28/arrest-molecules.git
cd arrest-molecules
python -m venv .venv
# 2. Activate environment
# Windows: .venv\Scripts\activate
# Linux/Mac: source .venv/bin/activate
# 3. Install dependencies
pip install -r requirements.txt
# 4. Run reproducibility pipeline
python run_arrest_pipeline.pyOutput: Validates data files, creates outputs/ directory, and runs analysis scripts if available.
📖 Detailed guide: See QUICKSTART.md and DOCS/REPRO_STATUS.md
- Open
Compound_Properties_Database.csv - Identify compound of interest (e.g., Rapamycin)
- Note parameters: K_d = 0.1 nM, τ_residence = 120 min, t_onset = 1440 min, EC₅₀ = 1 nM
- Run Python script:
python Python_Code_API_Monte_Carlo.py --compound Rapamycin
- Output: API = 0.12 [95% CI: 0.08-0.16], Confidence: MODERATE
- Gather required parameters from literature (K_d, k_off or duration, t_onset, EC₅₀)
- Add row to
Compound_Properties_Database.csv - Run Python script with
--new_compoundflag - Compare API to reference standards (Table 1 in manuscript)
- Critically evaluate whether arrest classification criteria (EMC/NCR/PARI) apply
Caution: The classification system is a working hypothesis. Empirical validation against experimental outcomes is essential before drawing conclusions.
- Ensure R packages installed:
install.packages(c("ggplot2", "dplyr", "patchwork")) - Run:
Rscript R_Code_Figures_S2.R - Figures saved to
./output/directory as TIFF (300 dpi)
| Column Name | Description | Units | Data Type | Example |
|---|---|---|---|---|
| Compound_Name | Chemical name | — | String | Salvinorin A |
| CAS_Number | Chemical Abstracts Service registry | — | String | 83729-01-5 |
| SMILES | Simplified molecular-input line-entry system | — | String | COC(=O)[C@]12[C@@]3... |
| InChI | International Chemical Identifier | — | String | InChI=1S/C23H28O8... |
| Molecular_Formula | Elemental composition | — | String | C23H28O8 |
| Molecular_Weight | Molecular mass | g/mol | Numeric | 432.47 |
| LogP | Octanol-water partition coefficient | — | Numeric | 2.73 |
| Rotatable_Bonds | Count of freely rotatable bonds | — | Integer | 3 |
| Primary_Target | Main molecular target | — | String | Kappa-opioid receptor |
| Target_Gene | Gene symbol | — | String | OPRK1 |
| K_i | Inhibition constant | nM | Numeric | 1.8 |
| K_i_Source_PMID | PubMed ID for K_i value | — | Integer | 12202542 |
| K_d | Dissociation constant | nM | Numeric | 1.8 |
| k_off | Dissociation rate constant | min⁻¹ | Numeric | 0.04 |
| tau_residence | Residence time (1/k_off) | min | Numeric | 25 |
| t_onset | Time to 50% effect | min | Numeric | 1 |
| EC50 | Half-maximal effective conc. | nM | Numeric | 2 |
| EC50_Assay | Functional assay type | — | String | GIRK activation |
| t_half_plasma | Plasma half-life | h | Numeric | 0.15 |
| Cmax | Peak plasma concentration | ng/mL | Numeric | 2.4 |
| AUC | Area under curve | ng·h/mL | Numeric | 15 |
| Vd | Volume of distribution | L/kg | Numeric | 3.2 |
| Clearance | Systemic clearance | L/h/kg | Numeric | 12.5 |
| Protein_Binding | Plasma protein binding | % | Numeric | 89 |
| API_absolute | Arrest Potency Index (absolute) | nM⁻² | Numeric | 6.95 |
| API_relative | API normalized to salvinorin A | — | Numeric | 1.00 |
| API_CI_lower | 95% CI lower bound | — | Numeric | 0.85 |
| API_CI_upper | 95% CI upper bound | — | Numeric | 1.15 |
| AKR | Arrest Kinetics Ratio | — | Numeric | 1.5 |
| EMC | Entropy Modulation Coefficient | — | Numeric | -0.4 |
| NCR | Network Connectivity Reduction | % | Numeric | 50 |
| PARI | Post-Arrest Resilience Index | — | Numeric | 0.3 |
| Arrest_Level | Classification (1/2/3) | — | String | Level 3 |
| Confidence_Grade | Overall data quality | — | String | MODERATE |
- NA: Not applicable (e.g., EMC for non-neural compounds)
- ND: Not determined (measurement not yet performed)
- NR: Not reported in literature
- EST: Estimated value (not directly measured)
- Pharmacologists interested in testing the framework's predictions
- Medicinal chemists exploring potential dampening agent design principles
- Systems biologists studying network dynamics and oscillatory processes
- Researchers evaluating chronopharmacology hypotheses
- Educators seeking quantitative pharmacology case studies
Note: This framework is exploratory. Users should critically evaluate claims and contribute to validation efforts.
For the dataset:
Lepesteur T. (2025). Molecular Arrest Framework Research Data Package (v1.1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.17420685
For the manuscript:
Lepesteur T. Molecular Arrest in Biological Regulation: A Unifying Framework for Natural Compounds with Dampening Effects. Manuscript in preparation (2025)
For the code:
Lepesteur T. (2025). molecular-arrest-framework: API calculation tools (v1.1.0). GitHub. https://github.com/Mythmaker28/arrest-molecules
BibTeX:
@dataset{lepesteur2025molecular,
author = {Lepesteur, Tommy},
title = {Molecular Arrest Framework Research Data Package},
year = 2025,
publisher = {Zenodo},
version = {v1.1.0},
doi = {10.5281/zenodo.17420685},
url = {https://doi.org/10.5281/zenodo.17420685}
}Note: This DOI is the concept DOI that always points to the latest version. For citing a specific version, use the version-specific DOI from the Zenodo record.
v1.1.1 (October 2025): ⭐ CURRENT (Reproducibility Patch)
- ✅ Quick check script for instant validation (< 1s)
- ✅ Full CI/CD reproducibility workflow
- ✅ Automated artifact verification
- ✅ SHA256 checksums for all assets
- ✅ DOI Zenodo integrated everywhere
- ✅ 1-click reproducibility guaranteed (< 3 min)
v1.1.0 (October 2025):
- Extended dataset: 6 → 10 compounds (+67%)
- New compounds: Ibogaine, Noribogaine (hybrid arrest), Psilocybin, LSD (oscillation)
- Case studies supplement: 5 detailed case studies spanning arrest-oscillation continuum
- requirements.txt: Explicit Python dependencies with versions
- Updated predictions: 42 → 44 with refined confidence grading
- Enhanced documentation: 95+ literature sources
v1.0 (October 2025):
- Initial release accompanying manuscript submission
- 6 core arrest compounds characterized
- 44 predictions with confidence grading
- Monte Carlo uncertainty quantification implemented
Planned updates (contingent on validation):
- v1.2: Add salvinorin A analogs (8 compounds) from Supplementary Table S2 — if SAR patterns hold
- v2.0: Incorporate Experiment 1 results (salvinorin fMRI data) — if predictions confirmed
- v2.1: Incorporate Experiment 2 results (oscillatory cellular lifespan) — if oscillatory advantage validated
- v3.0: Clinical validation from Experiment 3 (TRD trial) — if safety/efficacy demonstrated
Note: Future versions depend on prospective experimental validation. If key predictions fail, the framework will require substantial revision or abandonment.
Questions: tommy.lepesteur@hotmail.fr
Issue tracking: https://github.com/Mythmaker28/arrest-molecules/issues
Contributions: Pull requests welcome for novel compound additions (requires literature sources)
Controlled access requests (for synthesis protocols): Email corresponding author with:
- Institutional email (no personal addresses)
- IRB approval documentation (PDF)
- Research protocol summary (1 page)
- Statement of intended use (therapeutic research only)
Response within 7 business days.
Data: Creative Commons Attribution 4.0 International (CC-BY 4.0)
- ✓ Share and adapt freely
- ✓ Provide attribution
- ✓ Indicate if changes made
Code: MIT License
- ✓ Use commercially or non-commercially
- ✓ Modify and distribute
- ✓ Include original license notice
Restrictions: Synthesis protocols for high-potency analogs subject to controlled access (see Data Availability Statement in manuscript Section "Data Availability Statement").
Data compilation supported by independent literature review with quality verification by an external consultant. Database access via freely available public resources (DrugBank, PubChem, ChEMBL).
Dataset expansion (+67%) :
- 4 nouveaux composés ajoutés : Ibogaine, Noribogaine, Psilocybin, LSD
- Dataset : 6 → 10 composés couvrant tout le continuum arrest-oscillation
- Ibogaine/Noribogaine : Arrest hybride DAT/SERT/κ-opioid, mécanisme addiction reset
- Psilocybin/LSD : Oscillation haute entropie (EMC positif), dissolution DMN
Nouveau supplément : Case_Studies_Supplement.md (5 études détaillées) :
- Ibogaine & Noribogaine : Hybrid arrest, GDNF neuroplasticity, addiction reset
- Resveratrol & SIRT1 : Minimal arrest (témoin négatif), échec seuil
- Fasting & Breathing : Natural oscillators, physiological arrest principles
- Psilocybin & LSD : High-entropy oscillation, DMN connectivity, TRD applications
- AI Memory Extension : Dropout/consolidation parallels, computational arrest
Documentation améliorée :
requirements.txtcréé avec versions exactes (numpy 1.24.3, pandas 2.0.3, etc.)- Références bibliographiques : 85 → 95+ sources
- Prédictions : 42 → 44 (ajout métabolites psychédéliques)
Statistiques mises à jour dans README :
- Compound_Properties_Database.csv : 10 lignes, 36 colonnes
- Literature sources : 95+ PMIDs
- Case studies : 5 (vs 0 précédemment)
Harmonisation prédictions (42→44) :
- Nombre de prédictions corrigé dans v6.txt pour correspondre au CSV
- Statistiques de confiance recalculées : High 18/44 (41%), Moderate 13/44 (30%), Low 13/44 (30%)
Fichiers manquants créés (5) :
Experimental_Protocols_Summary.csv,R_Code_Figures_S2.R,Data_Dictionary.mdLiterature_Search_Strategy.md,API_Calculations_Full.xlsx
Figures brouillons créés (3) :
Figure_S1_Molecular_Structures_draft.png,Figure_S2_Oscillatory_Advantage_draft.png/tiffFigure_S3_API_Flowchart_draft.png
Améliorations code :
- Option
--random-seedajoutée au script Python (défaut 42 reproductible)
2025-10-21: Dataset created, v1.0 submitted with manuscript