Skip to content

MinimaML/srde-mistral

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

65 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SRDE - Sparse Routed Delta Experts

Parameter-efficient enhancement for Mistral-3-14B-Reasoning

Adds 6 domain experts (~12M params) that dynamically route to improve:

  • Advanced Math
  • Formal Logic
  • Algorithm Design
  • Scientific Reasoning
  • Multi-step Planning
  • Abstract/Symbolic reasoning

Quick Start (Vast.ai)

1. Set Environment Variables

export GITHUB_REPO="https://github.com/YOUR_USERNAME/srde-mistral"
export HF_TOKEN="hf_your_token"
export EXAMPLES_PER_DOMAIN=50000  # 300K total
export MAX_STEPS=10000

2. Run on Vast.ai

Use vastai_startup.sh as your startup script. It will:

  1. Clone this repo
  2. Download datasets (GSM8K, MATH, CodeContests, etc.)
  3. Pre-tokenize for Mistral
  4. Train with Flash Attention + Muon optimizer

3. Estimated Cost

Metric Value
Data 300K examples
Time ~12 hours
Cost ~£28 (1× H200)

Local Usage

# Install
pip install -r requirements.txt

# Build dataset
python build_and_upload_dataset.py \
    --repo_name YOUR_USER/srde-dataset \
    --examples_per_domain 50000

# Train
python train.py \
    --pretokenized_dir ./data \
    --flash_attention \
    --use_muon \
    --compile

Configuration

Parameter Default Description
num_experts 6 Domain expert count
top_k 2 Experts per token
target_sparsity 1% Final delta sparsity
max_steps 10000 Training steps

Files

File Purpose
train.py Main training script
srde.py Core architecture
config.py Configuration
build_and_upload_dataset.py Dataset pipeline
vastai_startup.sh Cloud startup script
muon.py Muon optimizer

Expert Domains

ID Domain Datasets
0 Math GSM8K, MATH, MetaMathQA
1 Logic LogiQA, ReClor
2 Code CodeContests, APPS
3 Science SciQ, ARC
4 Planning StrategyQA, HotpotQA
5 Abstract BIG-Bench Hard, AQuA-RAT

License

Apache License 2.0

About

Sparse Routed Delta Experts

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published