Skip to content

A roadmap for regressions problems (feature selection, linear regressions, decissions tree, SVM, XGBoost, NN, PCA y NN, kernel PCA y NN, CNN (1D, 2D), synthetic data generation VAE's y SMOTE, custom loss functions, customs, activations, tensorflow tunner to find the best architecture)

Notifications You must be signed in to change notification settings

MatheusGitMhub/Roadmap-for-regression-problems

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Roadmap for regression problems

A roadmap for regressions problems including [feature selection, linear regressions, decission trees, Support Vector Regressor, XGBoost, NN, PCA y NN, Kernel PCA (iteration over sigma) y NN, CNN (1D, 2D), synthetic data generation with VAE's and Synthetic minority oversampling technique (SMOTE), custom loss functions, customs activation functions, tensorflow tunner (random search) to find the best architectures of neural nets, etc.)]

About

A roadmap for regressions problems (feature selection, linear regressions, decissions tree, SVM, XGBoost, NN, PCA y NN, kernel PCA y NN, CNN (1D, 2D), synthetic data generation VAE's y SMOTE, custom loss functions, customs, activations, tensorflow tunner to find the best architecture)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages