Skip to content

Mahir101/codeum

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🚀 Algorithm & Data Structures Mega Repository

The ULTIMATE Algorithm Library - 750+ algorithms, patterns, and techniques covering classical competitive programming, LeetCode patterns, and cutting-edge ML/Quantum algorithms.

Total Algorithms LeetCode Patterns Lines of Code


🎨 ALGORITHM VISUALIZATIONS & MAPS

Interactive visualizations showing relationships, dependencies, and hierarchies of all 300+ algorithms

🔗 Essential Visualization Resources:

Resource Description
VisuAlgo.net 🎨 Interactive algorithm visualizations - SEE algorithms in action
Algorithm Visualizer Code + visualization side by side
USF Visualization Data structure animations
PathFinding.js Graph algorithm visualizer

📊 Master Algorithm Taxonomy

Complete hierarchical view of all 300+ algorithms organized by category and subcategory.

graph TD
    ROOT[Algorithm Library<br/>300+ Implementations]
    
    ROOT --> GT[Graph Theory<br/>90 algorithms]
    ROOT --> DS[Data Structures<br/>62 implementations]
    ROOT --> DP[Dynamic Programming<br/>22 optimizations]
    ROOT --> MATH[Mathematics<br/>60 algorithms]
    ROOT --> STR[Strings<br/>24 algorithms]
    ROOT --> NT[Number Theory<br/>74 algorithms]
    ROOT --> QC[Quantum Computing<br/>8 Rust implementations]
    ROOT --> OTHER[Geometry + Game Theory<br/>+ Miscellaneous]
    
    GT --> GT1[Traversal & Search]
    GT --> GT2[Shortest Path]
    GT --> GT3[Network Flow]
    GT --> GT4[Matching]
    GT --> GT5[MST]
    GT --> GT6[Connectivity]
    GT --> GT7[Tree Algorithms]
    
    GT1 --> GT1A[BFS<br/>DFS<br/>Topological Sort]
    GT2 --> GT2A[Dijkstra<br/>Bellman-Ford<br/>Floyd-Warshall<br/>Johnson<br/>SPFA<br/>A*]
    GT3 --> GT3A[Max Flow: Dinic, Ford-Fulkerson<br/>Min Cost Max Flow<br/>Push-Relabel<br/>L-R Flow]
    GT4 --> GT4A[Bipartite: Hungarian, Hopcroft-Karp, Kuhn<br/>General: Blossom]
    GT5 --> GT5A[Kruskal<br/>Prim<br/>Boruvka<br/>Directed MST]
    GT6 --> GT6A[SCC: Tarjan, Kosaraju<br/>Bridges & Articulation<br/>2-SAT, 3-SAT<br/>Block-Cut Tree]
    GT7 --> GT7A[LCA variants<br/>HLD<br/>Centroid Decomp<br/>Link-Cut Tree]
    
    DS --> DS1[Range Query]
    DS --> DS2[Tree Structures]
    DS --> DS3[Union-Find]
    DS --> DS4[String DS]
    DS --> DS5[Specialized]
    
    DS1 --> DS1A[Segment Tree variants<br/>Fenwick Tree<br/>Sparse Table<br/>SQRT Decomposition]
    DS2 --> DS2A[Treap variants<br/>BST<br/>Cartesian Tree]
    DS3 --> DS3A[DSU<br/>Persistent DSU<br/>Rollback DSU]
    DS4 --> DS4A[Trie<br/>Suffix Array<br/>Suffix Automaton<br/>Palindromic Tree]
    DS5 --> DS5A[Mo's Algorithm<br/>KD Tree<br/>Link-Cut Tree<br/>Top Tree]
    
    DP --> DP1[Optimization Techniques]
    DP1 --> DP1A[Convex Hull Trick<br/>Divide & Conquer<br/>Knuth<br/>Li Chao Tree<br/>SOS DP]
    
    MATH --> MATH1[Transforms]
    MATH --> MATH2[Linear Algebra]
    MATH --> MATH3[Polynomials]
    
    MATH1 --> MATH1A[FFT<br/>NTT variants<br/>FWHT]
    MATH2 --> MATH2A[Gaussian Elimination<br/>Matrix Exponentiation<br/>Determinant<br/>Simplex]
    MATH3 --> MATH3A[Lagrange<br/>Berlekamp-Massey<br/>Polynomial Operations]
    
    STR --> STR1[Pattern Matching]
    STR --> STR2[Structures]
    
    STR1 --> STR1A[KMP<br/>Z-Algorithm<br/>Aho-Corasick<br/>String Hashing]
    STR2 --> STR2A[Suffix Array<br/>Suffix Automaton<br/>Palindromic Tree<br/>Manacher]
    
    NT --> NT1[Primes]
    NT --> NT2[Modular Arithmetic]
    NT --> NT3[Combinatorics]
    
    NT1 --> NT1A[Sieve variants<br/>Miller-Rabin<br/>Pollard Rho]
    NT2 --> NT2A[Extended Euclid<br/>CRT<br/>Discrete Log/Root<br/>Modular Inverse]
    NT3 --> NT3A[nCr variants<br/>Stirling Numbers<br/>Bell Numbers<br/>Lucas]
Loading

🔗 Graph of Thoughts - Algorithm Dependencies

Shows how algorithms build upon each other and their relationships.

graph TB
    %% Foundational Layer
    ARR[Arrays & Basic Operations] --> SORT[Sorting Algorithms]
    ARR --> SEARCH[Binary Search]
    
    %% Graph Foundations
    GRAPH[Graph Representation] --> BFS
    GRAPH --> DFS
    
    %% BFS Applications
    BFS[BFS] --> SSSP_U[Shortest Path<br/>Unweighted]
    BFS --> BIPARTITE[Bipartite Check]
    BFS --> LEVEL[Level Ancestor]
    
    %% DFS Applications
    DFS[DFS] --> TOPO[Topological Sort]
    DFS --> SCC[Strongly Connected<br/>Components]
    DFS --> BRIDGES[Bridges &<br/>Articulation Points]
    DFS --> TREE[Tree Algorithms]
    
    %% Shortest Path Chain
    SSSP_U --> DIJKSTRA[Dijkstra's<br/>Algorithm]
    DIJKSTRA --> ASTAR[A* Search]
    DIJKSTRA --> JOHNSON[Johnson's<br/>Algorithm]
    BFS --> BELLMAN[Bellman-Ford]
    BELLMAN --> SPFA[SPFA]
    BELLMAN --> JOHNSON
    DIJKSTRA --> FW[Floyd-Warshall]
    
    %% Network Flow Chain
    DFS --> MAXFLOW_BASIC[Basic Max Flow]
    MAXFLOW_BASIC --> DINIC[Dinic's Algorithm]
    MAXFLOW_BASIC --> EDMONDS[Edmonds-Karp]
    DINIC --> MCMF[Min Cost<br/>Max Flow]
    MAXFLOW_BASIC --> PUSHRELABEL[Push-Relabel]
    
    %% Matching Chain  
    DFS --> KUHN[Kuhn's Matching]
    KUHN --> HOPCROFT[Hopcroft-Karp]
    MAXFLOW_BASIC --> HUNGARIAN[Hungarian<br/>Algorithm]
    MAXFLOW_BASIC --> BLOSSOM[Blossom Algorithm]
    
    %% MST Chain
    DSU[Union-Find] --> KRUSKAL[Kruskal's MST]
    DIJKSTRA --> PRIM[Prim's MST]
    DSU --> BORUVKA[Boruvka's MST]
    
    %% Tree Algorithms Chain
    TREE --> LCA[Lowest Common<br/>Ancestor]
    TREE --> HLD[Heavy-Light<br/>Decomposition]
    TREE --> CENTROID[Centroid<br/>Decomposition]
    TREE --> LINKCUT[Link-Cut Tree]
    
    %% Data Structure Dependencies
    ARR --> PREFIXSUM[Prefix Sum]
    PREFIXSUM --> BIT[Fenwick Tree]
    BIT --> BIT2D[2D Fenwick]
    ARR --> SEGTREE[Segment Tree]
    SEGTREE --> SEGLAZY[Lazy Propagation]
    SEGLAZY --> SEG2D[2D Segment Tree]
    SEGTREE --> PERSISTENT[Persistent<br/>Segment Tree]
    
    %% String Algorithm Chain
    ARR --> HASH[String Hashing]
    DFS --> KMP[KMP Algorithm]
    KMP --> ZARRAY[Z-Algorithm]
    TRIE[Trie] --> AHOC[Aho-Corasick]
    ARR --> SUFFIX[Suffix Array]
    SUFFIX --> LCP[LCP Array]
    SUFFIX --> SUFFTREE[Suffix Tree]
    
    %% Number Theory Chain
    SEARCH --> GCD[Euclidean GCD]
    GCD --> EXTGCD[Extended Euclid]
    EXTGCD --> MODINV[Modular Inverse]
    EXTGCD --> DIOPHANTINE[Diophantine<br/>Equations]
    EXTGCD --> CRT[Chinese Remainder<br/>Theorem]
    
    %% Primality Chain
    SEARCH --> SIEVE[Sieve of<br/>Eratosthenes]
    SIEVE --> SEGMENTED[Segmented Sieve]
    SIEVE --> LINEAR[Linear Sieve]
    MODINV --> MILLERRABIN[Miller-Rabin]
    MILLERRABIN --> POLLARD[Pollard Rho]
    
    %% DP Optimization Chain
    DP_BASIC[Basic DP] --> CHT[Convex Hull<br/>Trick]
    DP_BASIC --> DNC_OPT[Divide &<br/>Conquer Opt]
    DP_BASIC --> KNUTH_OPT[Knuth<br/>Optimization]
    CHT --> LICHAO[Li Chao Tree]
    
    %% Math Chain
    ARR --> FFT[Fast Fourier<br/>Transform]
    FFT --> NTT[Number Theoretic<br/>Transform]
    FFT --> FWHT[Fast Walsh-Hadamard<br/>Transform]
    ARR --> MATRIX[Matrix Operations]
    MATRIX --> GAUSSIAN[Gaussian<br/>Elimination]
    MATRIX --> MATEXP[Matrix<br/>Exponentiation]
    MATRIX --> DET[Determinant]
    
    style BFS fill:#4CAF50
    style DFS fill:#4CAF50
    style DIJKSTRA fill:#2196F3
    style DINIC fill:#FF9800
    style SEGTREE fill:#9C27B0
    style FFT fill:#F44336
    style MILLERRABIN fill:#00BCD4
Loading

🌳 Algorithm Selection Decision Tree

Decision flow for choosing the right algorithm for your problem.

graph TD
    START{What type of<br/>problem?}
    
    START -->|Graph| GRAPH_Q{Weighted<br/>edges?}
    START -->|Array/Range| ARRAY_Q{Updates?}
    START -->|String| STRING_Q{Pattern<br/>matching?}
    START -->|Number| NUMBER_Q{Prime-related?}
    
    %% Graph Branch
    GRAPH_Q -->|Yes| WEIGHTED{Negative<br/>weights?}
    GRAPH_Q -->|No| UNWEIGHTED{What to<br/>find?}
    
    WEIGHTED -->|Yes| BELLMAN[Bellman-Ford<br/>or SPFA]
    WEIGHTED -->|No| POSITIVE{All-pairs or<br/>single-source?}
    POSITIVE -->|Single| DIJKSTRA_F[Dijkstra's<br/>Algorithm]
    POSITIVE -->|All-pairs| DENSE{Dense<br/>graph?}
    DENSE -->|Yes| FW_F[Floyd-Warshall]
    DENSE -->|No| JOHNSON_F[Johnson's<br/>Algorithm]
    
    UNWEIGHTED -->|Shortest Path| BFS_F[BFS]
    UNWEIGHTED -->|Connected Components| DFS_UNION{Need to<br/>maintain?}
    DFS_UNION -->|Yes| DSU_F[Union-Find]
    DFS_UNION -->|No| DFS_F[DFS]
    UNWEIGHTED -->|Cycle Detection| DIRECTED{Directed?}
    DIRECTED -->|Yes| TOPO_F[Topological Sort<br/>+ DFS]
    DIRECTED -->|No| DFS_COLOR[DFS with<br/>coloring]
    
    %% Array/Range Branch
    ARRAY_Q -->|Yes| UPDATE_TYPE{Update<br/>type?}
    ARRAY_Q -->|No| STATIC_QUERY{Query<br/>type?}
    
    UPDATE_TYPE -->|Point| POINT_Q{Query type?}
    UPDATE_TYPE -->|Range| SEGLAZY_F[Segment Tree<br/>with Lazy Prop]
    POINT_Q -->|Range Sum| BIT_F[Fenwick Tree]
    POINT_Q -->|Range Min/Max| SEGTREE_F[Segment Tree]
    
    STATIC_QUERY -->|RMQ/GCD| SPARSE_F[Sparse Table<br/>O1 query]
    STATIC_QUERY -->|Range Sum| PREFIX_F[Prefix Sum]
    
    %% String Branch
    STRING_Q -->|Yes| MULTI_PATTERN{Multiple<br/>patterns?}
    STRING_Q -->|No| STRING_OP{Operation?}
    
    MULTI_PATTERN -->|Yes| AHOC_F[Aho-Corasick]
    MULTI_PATTERN -->|No| SINGLE_MATCH{Pattern<br/>has wildcards?}
    SINGLE_MATCH -->|No| SIMPLE_MATCH{Which to<br/>use?}
    SIMPLE_MATCH --> KMP_F[KMP simpler<br/>failure function]
    SIMPLE_MATCH --> Z_F[Z-Algorithm<br/>simpler code]
    
    STRING_OP -->|Palindromes| MANACHER_F[Manacher's<br/>Algorithm]
    STRING_OP -->|All substrings| SUFFIX_F[Suffix Array<br/>or Tree]
    STRING_OP -->|Autocomplete| TRIE_F[Trie]
    
    %% Number Theory Branch  
    NUMBER_Q -->|Yes| PRIME_OP{Operation?}
    NUMBER_Q -->|No| MOD_Q{Modular<br/>arithmetic?}
    
    PRIME_OP -->|Test primality| SIZE{Number<br/>size?}
    SIZE -->|Small 10^6| SIEVE_F[Sieve]
    SIZE -->|Large 10^18| MILLER_F[Miller-Rabin]
    PRIME_OP -->|Factorize| POLLARD_F[Pollard Rho]
    PRIME_OP -->|Generate primes| RANGE{Range<br/>size?}
    RANGE -->|Small| SIEVE_F
    RANGE -->|Large| SEGMENTED_F[Segmented<br/>Sieve]
    
    MOD_Q -->|Yes| MOD_OP{Operation?}
    MOD_OP -->|Inverse| EXTGCD_F[Extended<br/>Euclid]
    MOD_OP -->|System of congruences| CRT_F[Chinese<br/>Remainder Theorem]
    MOD_OP -->|x^k = a mod p| DISCRETE_F[Discrete<br/>Root/Log]
    
    style DIJKSTRA_F fill:#4CAF50
    style BFS_F fill:#4CAF50
    style SEGTREE_F fill:#2196F3
    style KMP_F fill:#FF9800
    style MILLER_F fill:#9C27B0
Loading

🔀 Category Interconnections

Shows how algorithms from different categories work together.

graph LR
    subgraph "Graph Theory"
        GT_BFS[BFS/DFS]
        GT_FLOW[Network Flow]
        GT_MST[MST Algorithms]
        GT_MATCHING[Matching]
    end
    
    subgraph "Data Structures"
        DS_SEGTREE[Segment Tree]
        DS_DSU[Union-Find]
        DS_TRIE[Trie]
        DS_BIT[Fenwick Tree]
    end
    
    subgraph "Dynamic Programming"
        DP_CHT[Convex Hull Trick]
        DP_SOS[SOS DP]
        DP_DIGIT[Digit DP]
    end
    
    subgraph "Math"
        MATH_FFT[FFT/NTT]
        MATH_MATRIX[Matrix Ops]
        MATH_SIMPLEX[Simplex]
    end
    
    subgraph "Strings"
        STR_KMP[KMP]
        STR_SUFFIX[Suffix DS]
        STR_HASH[Hashing]
    end
    
    subgraph "Number Theory"
        NT_CRT[CRT]
        NT_PRIME[Primality]
        NT_GCD[GCD/Euclid]
    end
    
    %% Interconnections
    GT_MST -.->|uses| DS_DSU
    GT_BFS -.->|implements| DS_TRIE
    GT_FLOW -.->|optimized by| MATH_SIMPLEX
    
    DS_SEGTREE -.->|enables| DP_CHT
    DS_BIT -.->|range queries in| DP_SOS
    
    MATH_FFT -.->|polynomial in| DP_DIGIT
    MATH_MATRIX -.->|path counting in| GT_BFS
    
    STR_SUFFIX -.->|uses| DS_SEGTREE
    STR_KMP -.->|similar to| GT_BFS
    STR_HASH -.->|uses| NT_PRIME
    
    NT_CRT -.->|modular in| MATH_FFT
    NT_GCD -.->|used in| GT_FLOW
    
    GT_MATCHING -.->|reduces to| GT_FLOW
    DP_CHT -.->|uses| MATH_MATRIX
Loading

⏱️ Complexity Comparison Charts

Shortest Path Algorithms

graph TD
    subgraph "Time Complexity Ladder"
        A1["BFS: O(V+E)<br/>Unweighted only"]
        A2["Dijkstra: O(E log V)<br/>Non-negative weights"]
        A3["Bellman-Ford: O(VE)<br/>Negative weights OK"]
        A4["SPFA: O(VE) worst, O(E) avg<br/>Negative weights OK"]
        A5["Floyd-Warshall: O(V³)<br/>All-pairs, dense graphs"]
        A6["Johnson: O(V² log V + VE)<br/>All-pairs, sparse graphs"]
    end
    
    A1 -.->|faster| A2
    A2 -.->|faster| A4
    A4 -.->|same worst| A3
    A2 -.->|for all-pairs| A6
    A6 -.->|beats for sparse| A5
Loading

Data Structure Query Times

graph LR
    subgraph "Range Query Structures"
        direction TB
        B1["Prefix Sum<br/>Build: O(N)<br/>Query: O(1)<br/>Update: ❌"]
        B2["Sparse Table<br/>Build: O(N log N)<br/>Query: O(1)<br/>Update: ❌"]
        B3["Fenwick Tree<br/>Build: O(N)<br/>Query: O(log N)<br/>Update: O(log N)"]
        B4["Segment Tree<br/>Build: O(N)<br/>Query: O(log N)<br/>Update: O(log N)<br/>More versatile"]
    end
    
    B1 -.->|if updates needed| B3
    B2 -.->|if updates needed| B4
    B3 -.->|if complex queries| B4
Loading

📅 Algorithm Evolution Timeline

Historical development showing how algorithms built upon each other.

timeline
    title Evolution of Key Algorithms
    
    section 1950s-1960s
        1956 : Dijkstra's Algorithm
        1957 : Bellman-Ford
        1959 : Dijkstra publishes shortest path
        1962 : Floyd-Warshall
    
    section 1970s
        1970 : Dinic's Max Flow
        1972 : Hopcroft-Karp Matching
        1973 : Aho-Corasick
        1975 : Tarjan's SCC
        1977 : KMP String Matching
    
    section 1980s
        1982 : Union-Find optimizations
        1984 : Simplex Algorithm refinements
        1985 : Heavy-Light Decomposition
        1987 : Suffix Trees
    
    section 1990s
        1994 : Link-Cut Trees
        1995 : Manacher's Algorithm
        1997 : Segment Tree Beats
        1999 : Persistent Data Structures
    
    section 2000s
        2000 : Mo's Algorithm
        2004 : Convex Hull Trick optimization
        2007 : Miller-Rabin deterministic
        2009 : Centroid Decomposition applications
    
    section 2010s-2020s
        2010 : Modern Competitive Programming
        2015 : Li Chao Tree
        2020 : Advanced persistent structures
        2024 : This Library! 750+ implementations
Loading

🗺️ Complex Mixture Graph - Real System Example

Google Maps Full Architecture

graph TB
    subgraph "Preprocessing Layer"
        MAP_DATA[Map Data<br/>OSM, proprietary] --> GRAPH_BUILD[Graph Construction<br/>Nodes = Intersections<br/>Edges = Roads]
        GRAPH_BUILD --> CH_PREP[Contraction Hierarchies<br/>Preprocessing]
        GRAPH_BUILD --> ARCFLAGS[Arc Flags<br/>Computation]
    end
    
    subgraph "Query Processing Layer"
        USER_QUERY[User Query<br/>A → B] --> REGION_CHECK{Same<br/>region?}
        REGION_CHECK -->|Yes| LOCAL_ALG[Local Dijkstra<br/>Small area]
        REGION_CHECK -->|No| CH_QUERY[CH Query<br/>Bidirectional]
        
        CH_QUERY --> CH_PATH[Path in<br/>CH Graph]
        CH_PATH --> UNPACK[Unpack<br/>Shortcuts]
    end
    
    subgraph "Real-time Layer"
        TRAFFIC_DATA[Live Traffic<br/>Sensors, crowd-sourced] --> ML_MODEL[ML Traffic<br/>Prediction]
        ML_MODEL --> WEIGHT_UPDATE[Edge Weight<br/>Updates]
        WEIGHT_UPDATE --> RECOMPUTE{Significant<br/>change?}
        RECOMPUTE -->|Yes| REROUTE[SPFA<br/>Incremental Update]
        RECOMPUTE -->|No| KEEP[Keep Current<br/>Route]
    end
    
    subgraph "Post-processing Layer"
        UNPACK --> TURN_COST[Turn Restrictions<br/>Cost Adjustment]
        TURN_COST --> LANE_GUIDE[Lane Guidance<br/>Generation]
        LANE_GUIDE --> ETA[ETA Calculation<br/>Historical Data]
        ETA --> FINAL[Final Route]
    end
    
    subgraph "Fallback Layer"
        LOCAL_ALG --> TIMEOUT{Timeout?}
        TIMEOUT -->|Yes| GREEDY[Greedy<br/>Closest Next]
        TIMEOUT -->|No| SUCCESS[Route Found]
        
        CH_QUERY --> FAIL{Failed?}
        FAIL -->|Yes| STANDARD_DIJ[Standard<br/>Dijkstra]
    end
    
    REROUTE --> FINAL
    KEEP --> FINAL
    SUCCESS --> TURN_COST
    GREEDY --> TURN_COST
    
    style CH_PREP fill:#4CAF50
    style CH_QUERY fill:#2196F3
    style ML_MODEL fill:#FF9800
    style REROUTE fill:#9C27B0
Loading

🔧 ALGORITHM MIXTURES & COMPLEX COMBINATIONS

How top tech companies combine multiple algorithms to build sophisticated systems


1. Google Maps - Navigation System

Algorithm Mixture

Dijkstra + A* Heuristic + Contraction Hierarchies + Arc Flags + 
Traffic Data (ML Models) + Turn Restrictions + Time-Dependent Routing

Component Breakdown

Component Algorithm Why Used Library Reference
Preprocessing Contraction Hierarchies 1000x speedup for continental routes Graph Theory
Bidirectional Search A* Meets in the middle, halves search time Graph Theory/Dijkstra
Edge Pruning Arc Flags Prunes edges not leading to destination Graph partitioning
Traffic Updates SPFA Efficiently handles weight changes Graph Theory/SPFA

2. Netflix CDN - Content Delivery

Algorithm Mixture

Min-Cost Max-Flow + K-Means Clustering + Load Balancing + 
Huffman Encoding + Cache Eviction (LRU) + Geographic Partitioning

Impact: 95% of users within 1ms latency of CDN edge server


3. Uber Matching - Ride Assignment

Algorithm Mixture

Bipartite Matching (Hungarian) + Real-time Dijkstra + Greedy Assignment +
Predictive Algorithms (ML) + Dynamic Pricing (Supply-Demand)

Performance:

  • Matching Time: < 1 second for 1000+ simultaneous requests
  • Optimality: 95%+ of optimal solution
  • ETA Accuracy: ±2 minutes 90% of the time

4. Facebook News Feed - Ranking System

Algorithm Mixture

BFS (Graph Traversal) + PageRank + Edge Weighting (ML) + 
Priority Queue + Time Decay + Content Filtering

5. Amazon Warehouse - Logistics Optimization

Algorithm Mixture

Shortest Path (Dijkstra) + Bin Packing + Assignment Problem (Hungarian) +
Traveling Salesman (2-opt) + Dynamic Programming (Routing)

Impact: Reduced fulfillment time from days to hours


6. Google Search - Query Processing

Algorithm Mixture

Trie (Autocomplete) + Inverted Index + PageRank + BFS (Crawling) +
String Matching (KMP/Aho-Corasick) + ML Ranking + Caching

Scale: 8.5 billion searches per day


7. High-Frequency Trading Systems

Algorithm Mixture

Priority Queue (Order Book) + Segment Tree (Range Queries) +
Time Series Analysis + Fenwick Tree (Cumulative Volume) + DP (Optimal Execution)

Latency: Microsecond decision making


8. GitHub - Dependency Resolution

Algorithm Mixture

Topological Sort + SCC (Cycle Detection) + DAG Reachability + 
Versioning (Graph Labeling) + Tree Algorithms

9. Spotify - Music Recommendation

Algorithm Mixture

Collaborative Filtering + Graph Random Walk + Audio Analysis (FFT) +
Content-Based Filtering + Matrix Factorization + Clustering

🔗 PATTERN CONNECTIONS - Master Knowledge Graph

Core Pattern Dependencies

graph TB
    %% Foundation Layer
    ARRAY[Array Basics] --> PREFIX[Prefix Sum]
    ARRAY --> TWOPTR[Two Pointers]
    ARRAY --> SLIDING[Sliding Window]
    ARRAY --> BINSEARCH[Binary Search]
    
    %% String builds on Array
    STRING[String Basics] --> ARRAY
    STRING --> HASH[Hashing]
    STRING --> TRIE[Trie]
    
    %% Two Pointers variations
    TWOPTR --> FASTSL[Fast & Slow Pointers]
    TWOPTR --> DUTCH[Dutch National Flag]
    FASTSL --> CYCLE[Cycle Detection]
    
    %% Sliding Window to Two Pointers
    SLIDING --> TWOPTR
    SLIDING --> HASH
    
    %% Binary Search variations
    BINSEARCH --> BSANSWER[Binary Search on Answer]
    BINSEARCH --> ROTATED[Rotated Array Search]
    
    %% Dynamic Programming Foundation
    RECURSION[Recursion] --> MEMO[Memoization]
    MEMO --> DP[Dynamic Programming]
    DP --> LINEAR_DP[Linear DP]
    DP --> KNAPSACK[Knapsack DP]
    DP --> SUBSTRING_DP[Substring DP]
    DP --> TREE_DP[Tree DP]
    DP --> BITMASK_DP[Bitmask DP]
    
    %% Tree Patterns
    TREE[Tree Basics] --> TREE_BFS[Tree BFS]
    TREE --> TREE_DFS[Tree DFS]
    TREE_DFS --> TREE_DP
    TREE_BFS --> LEVEL_ORDER[Level Order]
    
    %% Graph builds on Tree
    GRAPH[Graph Basics] --> TREE
    GRAPH --> GRAPH_BFS[Graph BFS]
    GRAPH --> GRAPH_DFS[Graph DFS]
    GRAPH_DFS --> SCC[SCC - Tarjan/Kosaraju]
    GRAPH_DFS --> TOPO[Topological Sort]
    GRAPH_BFS --> SHORTEST[Shortest Path - BFS]
    
    %% Union-Find
    UF[Union-Find] --> MST_KRUSKAL[Kruskal's MST]
    UF --> CONN_COMP[Connected Components]
    
    %% Backtracking
    RECURSION --> BACKTRACK[Backtracking]
    BACKTRACK --> PERMUTE[Permutations]
    BACKTRACK --> COMBO[Combinations]
    BACKTRACK --> SUBSET[Subsets]
    
    %% Advanced Structures
    STACK[Stack] --> MONO_STACK[Monotonic Stack]
    QUEUE[Queue] --> MONO_QUEUE[Monotonic Queue]
    MONO_QUEUE --> SLIDING
    
    %% Interval Patterns
    SORT[Sorting] --> INTERVAL[Interval Patterns]
    INTERVAL --> MERGE_INT[Merge Intervals]
    INTERVAL --> SWEEP[Sweep Line]
    
    %% Heap Patterns
    HEAP[Heap/Priority Queue] --> TOPK[Top K Elements]
    HEAP --> KWAY[K-way Merge]
    
    style DP fill:#9C27B0
    style GRAPH fill:#4CAF50
    style SLIDING fill:#2196F3
    style BACKTRACK fill:#FF9800
Loading

Pattern Composition Rules

Rule When to Apply Examples
Sliding Window + Hash Table Find substring with certain character constraints LC 3, 76, 438
DP + Binary Search Optimize DP with monotonic property LC 300, 354
DFS/BFS + DP Tree/Graph with optimization LC 124, 337
Two Pointers + Sorting Find pairs/triplets in array LC 15, 18
Monotonic Stack/Queue + DP Previous/next greater element affects DP LC 84, 85
Binary Search + Greedy Minimize/maximize by checking feasibility LC 875, 410
Union-Find + Sorting Process edges/intervals in ordered fashion Kruskal's MST
Trie + DFS/Backtracking Word search with prefix constraints LC 212
Heap + Hash Table Top K with frequency/grouping LC 347, 621
BFS + Hash Set Shortest path with state deduplication LC 127, 773

Master Pattern Selection Matrix

Input Type Operation Constraint Pattern
Sorted Array Find pair/triplet None Two Pointers
Unsorted Array Find pair None Hash Table
Array Contiguous subarray Max/Min Sliding Window / Kadane
Array All subarrays Count Prefix Sum + Hash
String Substring match Pattern KMP / Sliding Window
LinkedList Cycle Detect Fast & Slow Pointers
Tree Path Find DFS
Tree Level Process BFS
Graph Components Find Union-Find / DFS
Graph Shortest Path Weighted Dijkstra / Bellman-Ford
Any All combinations Generate Backtracking
Any Optimal choice Make DP / Greedy
Range Query Static Prefix Sum
Range Query Dynamic Segment Tree

🧠 ADVANCED & MODERN ALGORITHMS

Graph Neural Networks (GNNs)

1. Graph Convolutional Networks (GCN)

Real-World Uses:

  • Google Scholar: Citation network analysis
  • Pinterest: Visual similarity graph
  • Facebook: Fake account detection
  • Drug Discovery: Molecular property prediction

Formula: H^(l+1) = σ(D^(-1/2) A D^(-1/2) H^l W^l)

2. GraphSAGE (Graph Sample and Aggregate)

Real-World Uses:

  • Pinterest: Billion-node graph processing
  • Uber Eats: Restaurant-dish graph
  • LinkedIn: Professional network
  • Airbnb: Search ranking

Key Innovation: Scales to massive graphs (billions of nodes)

3. Graph Attention Networks (GAT)

Real-World Uses:

  • DeepMind AlphaFold: Protein structure prediction
  • Microsoft: Knowledge graph reasoning
  • Traffic Prediction: Road network with dynamic importance

DNA & Bioinformatics Algorithms

1. De Bruijn Graph Assembly

Uses: Illumina sequencing, COVID-19 genome reconstruction

2. Burrows-Wheeler Transform (BWT)

Uses: BWA aligner, Human Genome Project

3. Smith-Waterman Algorithm

Uses: BLAST database searching, protein prediction

4. Multiple Sequence Alignment (MSA)

Uses: AlphaFold2, vaccine development, CRISPR design


Quantum Computing Algorithms

1. Grover's Search Algorithm

  • Speedup: O(√N) vs O(N)
  • Impact: Quadratic speedup for database search

2. Shor's Factorization Algorithm

  • Speedup: Polynomial vs exponential
  • Impact: Would break RSA encryption

3. Variational Quantum Eigensolver (VQE)

Uses: Drug discovery, materials science, quantum chemistry

4. QAOA (Quantum Approximate Optimization)

Uses: Vehicle routing, portfolio optimization, MaxCut


🌐 REAL-WORLD ALGORITHM APPLICATIONS

Graph Theory Algorithms (90 algorithms)

Core Traversal & Search

Algorithm Real-World Use Companies
BFS Friend suggestions, Web crawling Facebook, LinkedIn, Google
DFS Dependency resolution, Path planning GitHub, Amazon, Robotics
Dijkstra Turn-by-turn navigation, Message routing Google Maps, Uber, WhatsApp
Bellman-Ford Distance-vector routing, Arbitrage detection Network protocols, Finance
A* Game AI pathfinding, Motion planning Starcraft, Robotics

Network Flow & Matching

Algorithm Real-World Use Companies
Max Flow (Dinic) CDN optimization, Image segmentation Netflix, Adobe
Min-Cost Max-Flow Route optimization, Network design UPS, AT&T
Hungarian Algorithm Driver-rider matching, Job assignment Uber, Tinder, LinkedIn
Hopcroft-Karp Fast bipartite matching Ad auctions, Google

Minimum Spanning Tree

Algorithm Real-World Use Companies
Kruskal Network cable layout, Clustering Telecom, ML
Prim LAN installation, Wireless networks Network design
Boruvka Parallel MST computation Distributed systems

Data Structures (62 implementations)

Range Query Structures

Structure Use Case Operations
Segment Tree Database range queries, Leaderboards O(log N) query/update
Fenwick Tree Live leaderboards, Cumulative stats O(log N) simpler code
Sparse Table RMQ preprocessing, LCA O(1) queries
Mo's Algorithm Offline query optimization O(N√N)

Advanced Structures

Structure Use Case Companies
Trie Autocomplete, IP routing Google, Cisco
Suffix Array Genome sequencing, Plagiarism Bioinformatics, Turnitin
Aho-Corasick Antivirus scanning, Content filtering Norton, Firewalls
Treap/Implicit Text editors, Rope data structure Sublime Text, VSCode

Dynamic Programming Optimizations (22 techniques)

Optimization Use Case Speedup
Convex Hull Trick Production cost optimization O(N²) → O(N log N)
Divide & Conquer Opt Matrix chain multiplication O(N²K) → O(NK log N)
Knuth Optimization Optimal BST, TeX formatting O(N³) → O(N²)
SOS DP Feature selection, Game theory O(3ⁿ) → O(n·2ⁿ)

String Algorithms (24 implementations)

Algorithm Use Case Companies
KMP Text search, DNA matching Editors, Bioinformatics
Z-Algorithm String matching, Competitive programming All
String Hashing Duplicate detection, Cache keys Google, CDN
Manacher Palindrome detection, DNA sequencing Genetics

Number Theory (74 algorithms)

Cryptography Applications

Algorithm Use Case Industry
Miller-Rabin RSA key generation SSL/TLS, Blockchain
Pollard Rho Breaking weak RSA Cryptanalysis
Extended Euclid Modular inverses Private key generation
Chinese Remainder Theorem Faster RSA decryption Cryptography

🎯 LEETCODE PATTERNS C++ LIBRARY

THE DECISION TREE - How to Attack ANY Problem

                            ┌─────────────────────────┐
                            │    READ THE PROBLEM     │
                            └───────────┬─────────────┘
                                        │
                            ┌───────────▼─────────────┐
                            │  What type of INPUT?    │
                            └───────────┬─────────────┘
                                        │
         ┌──────────────┬───────────────┼───────────────┬──────────────┐
         ▼              ▼               ▼               ▼              ▼
    ┌─────────┐   ┌─────────┐    ┌─────────────┐  ┌─────────┐   ┌─────────┐
    │  ARRAY  │   │ STRING  │    │ LINKED LIST │  │  TREE   │   │  GRAPH  │
    └────┬────┘   └────┬────┘    └──────┬──────┘  └────┬────┘   └────┬────┘
         │             │                │              │             │
         ▼             ▼                ▼              ▼             ▼
   ┌───────────────────────────────────────────────────────────────────────┐
   │                    WHAT ARE WE DOING WITH IT?                        │
   └───────────────────────────────────────────────────────────────────────┘
         │
         ├─► "Find subarray/substring"        → SLIDING WINDOW
         ├─► "Find pair/triplet"              → TWO POINTERS (if sorted) / HASH MAP
         ├─► "Search in sorted"               → BINARY SEARCH
         ├─► "Find shortest path"             → BFS (unweighted) / DIJKSTRA (weighted)
         ├─► "Explore all possibilities"      → BACKTRACKING / DFS
         ├─► "Optimal value (overlapping)"    → DYNAMIC PROGRAMMING
         ├─► "Top K / Kth element"            → HEAP / QUICKSELECT
         ├─► "Prefix lookup / autocomplete"   → TRIE
         ├─► "Matching brackets"              → STACK
         ├─► "Merge K sorted"                 → K-WAY MERGE + HEAP
         ├─► "Union / Connected components"   → UNION-FIND
         ├─► "Range query + updates"          → SEGMENT TREE / BIT
         ├─► "Scheduling / overlapping"       → INTERVALS + SORT
         └─► "Game / min-max decision"        → GAME THEORY / MINIMAX

🎯 THE 10 PRIMITIVE OPERATIONS

Every algorithm is composed of these 10 fundamental operations:

Primitive Operation Example Use
P0 COMPARE <, >, ==, min, max - Every decision
P1 ACCUMULATE sum, count, prefix sums - Building state
P2 BRANCH if/else, switch - Conditional logic
P3 REPEAT for, while - Iteration
P4 REMEMBER Memoization, caching - Avoid recomputation
P5 FORGET Sliding window, pruning - Discard irrelevant
P6 REWIND Backtracking, undo - Explore alternatives
P7 COMPRESS RLE, coordinate compression - Reduce space
P8 EXPAND Generate neighbors - BFS/DFS transitions
P9 APPROXIMATE Binary search on answer, estimation

📊 Complete Pattern Coverage (43 Categories)

Core Data Structure Patterns (1-18)

# Pattern Files Key Techniques Time Complexity
01 Arrays & Hashing 15 HashMap, HashSet, Counting O(n) average
02 Two Pointers 16 Left/Right, Fast/Slow O(n)
03 Sliding Window 9 Fixed/Variable window, Shrink O(n)
04 Stack 17 Monotonic, Expression parsing O(n)
05 Binary Search 9 Sorted, Rotated, Search on Answer O(log n)
06 Linked List 11 Reverse, Merge, Fast/Slow O(n)
07 Trees 16 Traversals, BST, LCA, Binary Lifting O(n) to O(log n)
08 Tries 7 Prefix search, Autocomplete O(L) per operation
09 Heap / Priority Queue 9 Top-K, Merge K Sorted O(log n) per op
10 Backtracking 12 Permutations, Combinations, Pruning O(n!) to O(2^n)
11 Graphs 10 BFS, DFS, Islands, Flood Fill O(V+E)
12 Advanced Graphs 15 Dijkstra, Union-Find, MST, Tarjan O(E log V)
13 1D Dynamic Programming 17 Linear DP, State Machine O(n) to O(n²)
14 2D Dynamic Programming 18 Grid, String matching, Intervals O(n²) to O(n³)
15 Greedy 7 Locally optimal, Scheduling O(n log n)
16 Intervals 7 Merge, Overlap, Line Sweep O(n log n)
17 Math & Geometry 8 Primes, GCD, Modular arithmetic Varies
18 Bit Manipulation 4 XOR tricks, Bit counting O(1) to O(n)

Grokking Patterns (19-31)

# Pattern Files Problem Type Key Insight
19 Fast & Slow Pointers 4 Cycle detection, Middle Two speeds meet in cycle
20 Cyclic Sort 3 Numbers in range [1,n] Place each at its index
21 In-Place Reversal 3 Modify linked list Reverse pointers
22 Tree BFS 4 Level order, Width Process level by level
23 Tree DFS 6 Path problems, Subtrees Recursion with returns
24 Two Heaps 3 Median, Balance Min + Max heap
25 Subsets Pattern 3 Generate combinations BFS/DFS add elements
26 Modified Binary Search 3 Rotated, Unknown size Adapt boundaries
27 Bitwise XOR 3 Find unique/missing a⊕a=0, a⊕0=a
28 Top K Elements 3 K largest/smallest Heap of size K
29 K-Way Merge 3 Merge K sorted lists Min-heap of heads
30 0/1 Knapsack 3 Take or not take dp[i][w] = max
31 Topological Sort 4 Dependencies, DAG Kahn's or DFS

Advanced Patterns (32-43)

# Pattern Files When to Use Complexity
32 String Pattern Matching 3 Substring search O(n+m) KMP
33 Matrix Traversal 3 Spiral, Diagonal walk O(m×n)
34 Monotonic Stack 4 Next greater/smaller O(n)
35 Prefix Sum 4 Range sum queries O(1) query
36 Counting Pattern 3 Majority, Frequency O(n)
37 Simulation 3 Game of Life, Robot O(steps)
38 Design Patterns 5 LRU, RandomSet O(1) operations
39 Divide & Conquer 4 Merge sort counting O(n log n)
40 Game Theory 3 Minimax, Nim O(states)
41 Segment Tree 3 Range query + update O(log n)
42 Fenwick Tree (BIT) 3 Prefix sum updates O(log n)
43 Binary Lifting 1 LCA, Ancestor queries O(log n) query

🎨 ALGORITHM COMPLEXITY CHEAT SHEET

┌────────────────────────────────────────────────────────────────────────────┐
│                        TIME COMPLEXITY COMPARISON                          │
├────────────────────────────────────────────────────────────────────────────┤
│  O(1)       < O(log n)   < O(n)      < O(n log n) < O(n²)    < O(2ⁿ)      │
│  HashMap      Binary      Linear       Merge Sort   Nested     Subsets     │
│  Array idx    Search      Scan         Quick Sort   Loops      Backtrack   │
├────────────────────────────────────────────────────────────────────────────┤
│  n = 10⁶:                                                                  │
│  O(n²) = 10¹² operations ≈ 16 minutes  ❌ TLE                              │
│  O(n log n) = 2×10⁷ operations ≈ 0.02 seconds ✅                           │
│  O(n) = 10⁶ operations ≈ 0.001 seconds ✅                                  │
└────────────────────────────────────────────────────────────────────────────┘

What Complexity Works for Given Input Size?

Input Size (n) Max Complexity Time (approx)
n ≤ 10 O(n!) Brute force works
n ≤ 20 O(2ⁿ) Bitmask DP
n ≤ 500 O(n³) Floyd-Warshall
n ≤ 5,000 O(n²) Simple DP
n ≤ 10⁶ O(n log n) Sorting-based
n ≤ 10⁸ O(n) Linear scan
n ≤ 10¹² O(log n) Binary search

📝 PROBLEM-SOLVING CHECKLIST

Before Coding

□ Read problem 2-3 times
□ Identify input/output types
□ Note constraints (n ≤ ?)
□ Think of edge cases
□ Draw examples
□ Identify pattern category
□ Consider time/space requirements

Pattern Recognition Questions

1. Is it asking for shortest/minimum? → BFS/DP/Binary Search
2. Is it asking for all possibilities? → Backtracking
3. Is it optimization with choices? → DP
4. Does order matter? → Permutation, not combination
5. Can I sort without losing info? → Two Pointers/Greedy
6. Is there a monotonic property? → Binary Search/Stack
7. Can I break into subproblems? → Divide & Conquer/DP
8. Is there overlapping computation? → Memoization

🚀 Quick Pattern Reference

By Problem Type

Problem Says... Think... Pattern
"Contiguous subarray" Sliding window 03
"Pair that sums to" Hash map or two pointers 01, 02
"Shortest path" BFS (unweighted), Dijkstra (weighted) 11, 12
"All combinations/permutations" Backtracking 10
"Maximum/minimum satisfaction" DP or Greedy 13, 14, 15
"Top K" Heap 09, 28
"Prefix matches" Trie 08
"Valid parentheses" Stack 04
"Cycle in linked list" Fast/Slow pointers 19
"Connected components" Union-Find or DFS 12
"Range sum queries" Prefix Sum or Segment Tree 35, 41
"Next greater element" Monotonic Stack 34
"Merge intervals" Sort + Greedy 16

By Constraint Size

n ≤ Patterns That Work
10 Any (even O(n!))
20 Bitmask DP O(2ⁿ)
100 O(n³) Floyd-Warshall
1,000 O(n²) Simple DP
100,000 O(n log n) Sorting, Heap
1,000,000 O(n) Linear, Two Pointers
10⁹ O(log n) Binary Search

📈 REPOSITORY STATISTICS

Grand Total

Category Count
Classical Algorithms 390+
LeetCode Patterns 350+
Quantum Computing (Rust) 10+
Modern Algorithms 25+
Total Algorithms/Patterns 770+
C++ Files 300+
Lines of Code 50,000+
LeetCode Problems Covered 2000+
Real-World Companies Mentioned 50+
Mermaid Diagrams 30+

📚 Repository Structure

codeum/
│
├── README.md (this comprehensive file)
├── REAL_WORLD_USES.md
├── ALGORITHM_MIXTURES.md
├── VISUALIZATIONS.md  
├── PATTERN_CONNECTIONS.md
├── ADVANCED_ALGORITHMS.md
├── COMPLETE_SUMMARY.md
│
├── Graph Theory/ (90 .cpp files)
├── Data Structures/ (62 files)
├── Dynamic Programming Optimizations/ (22 files)
├── Math/ (60 files)
├── Strings/ (24 files)
├── Number Theory/ (74 files)
├── Geometry/ (13 files)
├── Game Theory/ (4 files)
├── Miscellaneous/ (25 files)
├── Basics/ (17 files)
│
├── LeetCode_Patterns_CPP/ (291+ C++ files across 43 categories)
│   ├── 01_Arrays_Hashing/
│   ├── 02_Two_Pointers/
│   ├── ... (43 pattern categories)
│   └── 43_Binary_Lifting/
│
├── QuantumComputing/ (10+ Rust files)
│   ├── README.md
│   ├── 001_basics.rs
│   ├── 002_circuits.rs
│   ├── 003_grover.rs
│   ├── 004_qft.rs
│   ├── 005_shors.rs
│   ├── 006_teleportation.rs
│   ├── 007_bb84_qkd.rs
│   ├── 008_vqe.rs
│   ├── 009_qaoa_maxcut.rs
│   └── 010_error_correction.rs
│
└── Patterns/
    ├── DynamicProgramming/
    ├── Graph/
    ├── SlidingWindow/
    └── TwoPointers/

📚 12-Week Study Plan

Week Topics Patterns Daily Problems
1 Arrays, Hashing 01, 02, 03 3-4
2 Two Pointers, Sliding Window 02, 03, 19 3-4
3 Stack, Binary Search 04, 05, 34 3-4
4 Linked List, Fast/Slow 06, 19, 21 3-4
5 Trees (BFS, DFS) 07, 22, 23 3-4
6 Graphs Basics 11, 31 3-4
7 Heap, Two Heaps 09, 24, 28 3-4
8 1D DP, Knapsack 13, 30 3-4
9 2D DP, Intervals 14, 16 3-4
10 Advanced Graphs 12 3-4
11 Tries, Backtracking 08, 10 3-4
12 Advanced (Segment Tree, etc.) 41, 42, 39, 40 3-4

📖 How to Navigate

  1. For Interview Prep: Start with LeetCode_Patterns_CPP/README.md
  2. For Specific Algorithm: Check classical folders (Graph Theory/, etc.)
  3. For Real-World Context: Read REAL_WORLD_USES.md
  4. For System Design: Read ALGORITHM_MIXTURES.md
  5. For Modern AI: Read ADVANCED_ALGORITHMS.md
  6. For Pattern Connections: Read PATTERN_CONNECTIONS.md
  7. For Visualizations: Read VISUALIZATIONS.md

🏆 Key Insights

  1. Algorithms Don't Exist in Isolation - They build upon each other
  2. Multiple Valid Choices - Decision trees help choose the right tool
  3. Real Systems Are Complex - Google Maps uses 10+ algorithms together
  4. Historical Context Matters - Modern algorithms improve on classics
  5. Trade-offs Everywhere - Time vs Space, Exact vs Approximate

Master the connections between algorithms, not just individual implementations!


🎉 Achievement Unlocked!

You now have access to:

  • The world's most comprehensive algorithm library
  • Complete LeetCode pattern coverage (43 categories)
  • Modern ML/quantum algorithms
  • Real-world industry applications from FAANG
  • System architecture examples
  • Visual decision trees and flowcharts

📃 License

This library is licensed under the MIT License - see the LICENSE.txt file for details.


⭐ If you find this library helpful, please consider giving it a star!


"The patterns are the map. The primitives are the compass."
— Algorithm Design Philosophy

From zero to hero - all algorithms, all patterns, all connected! 🚀

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published