data/hetio/metaedge_encoding.json : Only the encoding value included in the original relations_2hop.txt exists
data/drugbank/train.txt
data/drugbank/dev.txt
data/drugbank/test.txt
data/drugbank/drugbank.txt
SumGNN provided
data/drugbank/DB_molecular_feats.pkl
data/davis/Davis_train_origin.csv
data/davis/Davis_val_origin.csv
data/davis/Davis_test_origin.csv
data/davis/davis : 위의 세 파일을 단순 concat
data/davis/Davis_train_test_val.ipynb : network filtering
data/davis/train.txt
data/davis/dev.txt
data/davis/test.txt
data/davis/davis.txt : input for hetio extractor
data/davis/get_dt_pkl.ipynb (코드 리팩토링 중)
data/davis/DAVIS_drug_feats.pkl
data/davis/DAVIS_target_feats.pkl
data/kiba/kiba.pkl
data/kiba/train.txt
data/kiba/dev.txt
data/kiba/test.txt
data/kiba/kiba.txt : input for hetio extractor
BaselineModel/train_baseline_model.ipynb
python baselinemodel.py
-td ./data/davis/Davis_test_origin.csv # Dataset for Training
-vd ./data/davis/Davis_val_origin.csv # Dataset for Validation
-m SVM #(SVM, XGBoost, RandomForest) # Choose model to train and see the result.
bash run.sh ->
python train.py -d davis -e ddi_hop2 --gpu=2 --hop=2 --batch=128 -b=4 --num_epochs 500 --lr 0.00005
