This package provides extensible configuration loading from various sources.
Features:
- Dict-like configuration loading from:
- python dictionaries
- python objects
- python files
- environment variables
- JSON files
- Custom configuration sources and objects.
Basically config-source provides a way to register configuration loaders and
call them by names. The loader accepts optional arguments, reads configuration
from a specific source and populates a configuration object.
Example:
from config_source import DictConfig
from config_source import DictConfigLoader
config = DictConfig()
config.load_from('pyfile', '/path/to/config.py')
config.load_from('json', '/path/to/config.json')
config.load_from('env', prefix='MYCFG_')
loader = DictConfigLoader(config)
loader.load('/path/to/config.py')
loader.load('/path/to/config.json')
loader.load(SomeClassWithConfigs)
Out of the box you could use:
- Low level
load_to()function. DictConfigclass.DictConfigLoaderclass to assist in configurations loading.
load_to() calls a loader registered for a specific source and populates
a config object passed to it:
load_to(config, 'source_name', ...)
config- configuration object to populate.source_name- configuration source name.
DictConfig behaves like a regular python dictionary and provides
load_from method to load configurations from various sources (it uses
load_to() internally):
config = DictConfig() config.load_from(<source_name>, *args, **kwargs)
<source_name>- configuration source name;*argsand**kwargs- arguments for configuration loader.
The following sources are provided out of the box for dict-like configurations.
Note: dict-like means any object with mapping interface can be used as configuration object:
config = {}
load_to(config, 'env', ...)
dictconfig = DictConfig()
dictconfig.load_from('env', ...)
load_to(dictconfig, 'env', ...)
object- load configuration from a pythonobject. It reads attributes with uppercase names:config.load_from('object', <object>)Example:
class MyConfig: SECRET_KEY = 123 DEBUG = False ... config.load_from('object', MyConfig)dict- load configuration from a python dictionary. Reads only uppercase keys:config.load_from('dict', <dict>)Example:
myconfig = dict(SECRET_KEY=123, DEBUG=False) config.load_from('dict', myconfig)env- load configuration from current runtime environment:config.load_from('env', prefix=<name_prefix>, trim_prefix=True)prefix- Environment variable name prefix.trim_prefix- Include or not prefix to result config name
Example:
# Load vars with names MYCFG_*, like MYCFG_SECRET. config.load_from('env', prefix='MYCFG_')pyfile- load configuration from a python file. Reads only uppercase attributes:config.load_from('env', filename, silent=False)filename- filename to load.silent- Don't raise an error on missing files.
Example:
config.load_from('pyfile', 'config.py')json- load configuration from a json file. Reads only uppercase keys:config.load_from('json', filename, silent=False)filename- filename to load.silent- Don't raise an error on missing files.
Example:
config.load_from('json', '/path/to/config.json')
DictConfigLoader auto-detects source name from input configuration source:
loader = DictConfigLoader(config)
loader.load('/path/to/file.py')
# Same as:
config.load_from('pyfile', '/path/to/file.py')
You may subclass to extend auto-detection.
config_source decorator is used to register additional configuration
sources:
from config_source import config_source
@config_source('source_name')
def myloader(config, arg1, arg2):
config['XX'] = arg1 + arg2
config.load_from('source_name', 1, arg2=2)
Configuration loader must be a callable with at least one argument - configuration object to populate. Other arguments are optional and loader specific.
There is a possibility to register configuration sources by implementing a package with entry point:
setup(
...
entry_points={'config_source.sources': '<source> = <package name>'},
...
)
In the package you use config_source decorator.
For more info on entry points see
- https://packaging.python.org/guides/creating-and-discovering-plugins/
- http://setuptools.readthedocs.io/en/latest/pkg_resources.html#entry-points
- http://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins
Note: you could specify single entry point even if your package adds multiple sources.
Instead of always passing parameters to configuration loaders you could set
defaults in DictConfig:
config = DictConfig(defaults={
'env': {'prefix': 'MYAPP_'},
'pyfile': {'filename': '/path/to/file.py'}
})
# 'prefix' will be set to MYAPP_ for 'env' config source.
# Load from 'MYAPP_*' vars by default.
config.load_from('env')
# Load from 'MY_*' vars
config.load_from('env', 'MY_')
# Load from '/path/to/file.py' by default.
config.load_from('pyfile')
# Load from '/path/to/another/file.py'.
config.load_from('pyfile', '/path/to/another/file.py')
defaults is a map where keys are source names and values are keyword
parameters to be passed to loaders.
You can register configuration source for specific type
(by default it's a dict):
@config_source('source_name', config_type='mytype')
def mytype_loader(config):
....
config_type here is a string defining configuration object type.
Now you populate your config object using that loader:
load_to(config, 'source_name', config_type='mytype')
where config is object implementing mytype interface.
list configuration example:
from config_source import config_source, load_to
@config_source('object', config_type='list')
def object_loader(config, obj):
has = False
for key in dir(obj):
if key.isupper():
has = True
config.append(getattr(obj, key))
return has
class MyConfig:
SECRET = 1
DEBUG = False
cfg = []
load_to(cfg, 'object', config_type='list')
# cfg = [1, False]
# Fails because by default it calls loader for 'dict' configuration.
# load_to(cfg, 'object')