This repo contains a reconstructed verison for DeepVCF, which is model proposed in our paper "AI virtual cell factories for enhanced and genome-wide target prediction".
Note DeepME is old name.(see Old version)
DeepVCF is AI-driven framework that integrates comprehensive biological knowledge with experimental data to predict engineering targets at a genome-wide scale. By learning system-level relationships between genes and metabolites, DeepVCF extends the scope of traditional metabolic modelling and enables accurate identification of both metabolic and non-metabolic targets.

To run DeepVCF, following main dependency packages are needed:
python 3.8
torch 2.4.0
tqdm 4.66.5
numpy 1.24.4
pandas 2.1.1
scikit-learn 1.3.2
matplotlib 3.7.5
We provide necessary data and code for running DeepVCF in following structure:
.
├── code
│ └── __pycache__
├── data
│ ├── KG
│ │ ├── ALL
│ │ ├── CGL
│ │ ├── ECO
│ │ └── SCE
│ ├── me_data
│ │ ├── cross_species_transfer
│ │ │ ├── cgl
│ │ │ └── sce
│ │ ├── dataset
│ │ ├── ffa
│ │ ├── metabolic_gene
│ │ ├── non_metabolic_gene
│ │ └── train_data
│ │ └── embedding_benchmark
│ │ ├── amino_acid_hold_out
│ │ ├── carbohydrate_hold_out
│ │ ├── cofactors_and_vitamins_hold_out
│ │ ├── gene_hold_out_1
│ │ ├── gene_hold_out_2
│ │ ├── lipid_hold_out
│ │ ├── metabolite_hold_out
│ │ ├── nucleotide_hold_out
│ │ ├── random
│ │ ├── random_rev
│ │ └── secondary_metabolites_hold_out
│ └── other_data
├── fig
├── script
└── trained_model
see our paper for details.
# Modify the hyperparameters if needed.
python script/train_deepvcf.py
For easily reproduce, we reconstruct the code. This version largely reproduce our paper results (see script/example.ipynb).

see script/example.ipynb for more details.
🔔 NOTE:
1.DeepVCF might cause confusion in practical applications by simultaneously prioritizing KO and OE of same gene. (For example, rank one in the top 10, and rank the other in the top 50.)
- Add more species KG.
- Integrate automated text-mining pipeline.
- Add active learning part.
- Refine algorithms.
We welcome co-operation on cell factory design alghrithm develepment and real-world applications. If you have any questions or suggestions, please feel free to contact us.