Skip to content

LiLabTsinghua/D2Cell

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

D2Cell

Introduction

We developed D2Cell-pred, a hybrid model that combines mechanistic and deep learning approaches to predict outcomes for new cell factories. D2Cell-pred takes as input the target product, the GEM structure, and a set of gene modifications, and outputs the predicted impact of these modifications on the product.

Dependencies

We used the following Python packages for core development. We tested on Python 3.9.

name version
numpy 1.24.4
pandas 2.0.3
networkx 3.1
tqdm 4.66.5
torch 2.4.0
torch-geometric 2.5.3
scipy 1.10.1
seaborn 0.13.2
scikit-learn 1.3.2

Usage

Clone codes and download necessary data files

  • (1). Download the D2Cell-pred package
git clone https://github.com/LiLabTsinghua/D2Cell.git
  • (2). Download required Python package
pip install -r requirements.txt
  • (3). Download and unzip the model parameters under D2Cell
  • (4). Run Code/D2Cell-pred Model/predict demo.ipynb demo

Web Server

We also provide an dataset web server: D2Cell.

Contact

  • Feiran Li (@feiranl), Tsinghua University, Shenzhen, China
  • Xiongwen Li (@xiongwenL), Tsinghua University, Shenzhen, China

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •