This algorithms aims to do sensitivity analysis for high-dimensional data, even for dependent input variables.
-
test_anova_RFF.jl:
Test file for testing the RFF-Boosting. -
anova_RFF.jl:
Creates moduleanova_rff. -
algs_RFF.jl:
Containes all algortihms used for the ANOVA-Boosting.
The function
f = anova_RFF.RFF_model(X,y, "exp")
constructs a RFF model, where
U = anova_RFF.ANOVA_boosting(f,q,N)
finds an ANOVA-truncated index set
-
dependence:trueorfalse$\rightarrow$ there are two different possibilities implemented for the dependence of the input, see paper. The optiontruecan also be applied to Independent Input -
anova_step: 'ascent' or 'descent'$\rightarrow$ either start with all all terms of order$1$ and increase the order iteratively to$q$ or start with all terms of order$q$ and delete nonimportant terms of highest order iteratively. See corresponding Dissertation for more information. -
epsilon: threshold parameter
Once you have found an index-set anova_RFF.shrimp(X,y, U, N), which draws random Features according to the index set
All algorithms are implemented for the expoential basis make_A and in the module anova_rff.
This is the repository for the algorithms described in the paper
ANOVA-Boosting for Random Fourier Features
Daniel Potts, Laura Weidensager
ArXiv: 2404.03050
In the folder Dissertation you can find all numerical experiments for my Dissertation:
Figure 4.1: plots_kink.jl
Figure 6.8-6.11: interpretability.jl
Table 6.1: independent.jl
Table 6.2: numerik_dep.jl
Table 6.4: validate_trafo.jl, validate_RFF.jl