-
Notifications
You must be signed in to change notification settings - Fork 16
[algo] Adding CISPO policy loss #150
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
twkillian
wants to merge
11
commits into
verl-latest
Choose a base branch
from
verl-latest-cispo
base: verl-latest
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
11 commits
Select commit
Hold shift + click to select a range
4d704a0
Added CISPO loss function
twkillian 5c448ad
Configurations and small debugging to get CISPO running
twkillian 015a6b8
Completing verl-expected policy loss signature
twkillian 154135e
Update to rull full on-policy
twkillian fd9fd42
Fixing CISPO IS clipping to be one-sided as intended
twkillian 73d2b95
Sync
twkillian 99c7c65
sync
twkillian 9019074
Sync
twkillian 312ed82
Sync with Latex and sympy commented out from naive_dapo.py
twkillian 61cb565
Sync
twkillian dc631bd
Updating rewards to better handle OmniMath scoring
twkillian File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,343 @@ | ||
| #!/bin/bash | ||
| #SBATCH --job-name=grpo-k2p-newFiltered-64k-fullData-finalInstruct | ||
| #SBATCH --nodes=64 | ||
| #SBATCH --ntasks=64 | ||
| #SBATCH --ntasks-per-node=1 | ||
| #SBATCH --gres=gpu:8 | ||
| #SBATCH --cpus-per-task=96 | ||
| #SBATCH --mem=0 | ||
| #SBATCH --output=slurm/%x-%j.log | ||
| #SBATCH --error=slurm/%x-%j.log | ||
| #SBATCH --exclusive | ||
| #SBATCH --time=720:00:00 | ||
| #SBATCH --partition=main | ||
| #SBATCH --exclude=azure-uk-hpc-H200-instance-114,azure-uk-hpc-H200-instance-394 | ||
|
|
||
| # SBATCH --job-name=grpo-hero-k2p-finalInstruct-temp1.2-wOmni-fix2 | ||
|
|
||
| # =================== Frequently Used Variables =================== | ||
| RESUME_CKPT_DIR_NAME="" # Fill in the checkpoint directory name to resume from, otherwise from scratch | ||
| export STEM_LLM_JUDGE_URL="http://azure-uk-hpc-H200-instance-009:8000" # Fill in the llm-as-judge hosted URL, currently used only in 'STEM' domain | ||
| export MATH_LLM_JUDGE_URL="http://azure-uk-hpc-H200-instance-033:8000" # Fill in the OmniMATH llm-as-judge hosted URL, only used to score OmniMATH dataset if not empty | ||
|
|
||
| # =================== Cluster Environment =================== | ||
| export CONDA_BIN_PATH=/lustrefs/users/taylor.killian/miniconda3/envs/sync-rl/bin/ | ||
| export ROCR_VISIBLE_DEVICES=None | ||
| export NCCL_TIMEOUT_SECONDS=4800000 | ||
| export OMPI_MCA_coll_hcoll_enable=0 \ | ||
| TORCH_NCCL_ENABLE_MONITORING=0 \ | ||
| CUDA_DEVICE_ORDER=PCI_BUS_ID \ | ||
| NCCL_SOCKET_IFNAME=eth0 \ | ||
| UCX_TLS=rc \ | ||
| UCX_NET_DEVICES=mlx5_ib0:1 \ | ||
| NCCL_DEBUG=WARN \ | ||
| NCCL_TOPO_FILE=/opt/microsoft/ndv5-topo.xml \ | ||
| NCCL_IB_PCI_RELAXED_ORDERING=1 \ | ||
| NCCL_IB_QPS_PER_CONNECTION=4 \ | ||
| NCCL_IGNORE_CPU_AFFINITY=1 \ | ||
| NCCL_P2P_NET_CHUNKSIZE=$((512 * 1024)) \ | ||
| NCCL_PXN_DISABLE=1 \ | ||
| NCCL_MIN_NCHANNELS=32 \ | ||
| SHARP_SMX_UCX_INTERFACE=mlx5_ib0:1 \ | ||
| SHARP_COLL_ENABLE_SAT=1 \ | ||
| SHARP_COLL_LOG_LEVEL=3 \ | ||
| SHARP_COLL_ENABLE_PCI_RELAXED_ORDERING=1 \ | ||
| NCCL_COLLNET_ENABLE=1 | ||
|
|
||
| # Get the list of allocated nodes | ||
| nodes=( $(scontrol show hostnames "$SLURM_JOB_NODELIST") ) | ||
| echo "Nodes to check: ${nodes[@]}" | ||
|
|
||
| # We'll track PIDs so we can wait on them and detect errors | ||
| declare -A pids | ||
| export head_node=${nodes[0]} | ||
| head_node_ip=$(srun --nodes=1 --ntasks=1 -w "$head_node" hostname --ip-address) | ||
| port=6379 | ||
| address_head=$head_node_ip:$port | ||
|
|
||
| export worker_num=$SLURM_NNODES | ||
| export HYDRA_FULL_ERROR=1 | ||
| export VLLM_USE_V1=1 | ||
|
|
||
| # =================== Data Mixture =================== | ||
|
|
||
| # Training Data Configuration | ||
| DATA_MIX_DIR="/lustrefs/users/varad.pimpalkhute/data/k2/final/data_mix_1" | ||
| train_file_list=() | ||
|
|
||
| # List of datasets to include (filename only) | ||
| # Comment out lines to exclude specific datasets | ||
| dataset_names=( | ||
| "codegen__deduped_leetcode2k_2.4k.parquet" | ||
| "codegen__deduped_livecodebench_599.parquet" | ||
| "codegen__deduped_primeintellect_9.6k.parquet" | ||
| "codegen__deduped_taco_11.1k.parquet" | ||
| "ifbench__fixed_85.6k.parquet" | ||
| "logic__arcagi1_297.parquet" | ||
| "logic__arcagi2_653.parquet" | ||
| "logic__barc_3.4k.parquet" | ||
| "logic__graph_logical_dataset_1.4k.parquet" | ||
| "logic__ordering_puzzle_dataset_2.9k.parquet" | ||
| "logic__reasoning_gym_40.6k.parquet" | ||
| "logic__synlogic_12.1k.parquet" | ||
| "logic__zebra_puzzle_dataset_5.0k.parquet" | ||
| "math__combined_118.2k.part1.parquet" | ||
| "math__combined_118.2k.part2.parquet" | ||
| "omni_math_4.43k_dedup.parquet" | ||
| "simulation__codeio_fixed_12.1k.parquet" | ||
| "stem__nemotron_13.3k.parquet" | ||
| "stem__web_31.7k.parquet" | ||
| "table__hitab_7.4k.parquet" | ||
| "table__multihier_2.9k.parquet" | ||
| ) | ||
|
|
||
| echo "Collecting training files from ${DATA_MIX_DIR}..." | ||
|
|
||
| # Search for each dataset in all subdirectories | ||
| for dataset in "${dataset_names[@]}"; do | ||
| for subdir in "impossible_questions" "131k_context_questions" "main_questions"; do | ||
| file_path="${DATA_MIX_DIR}/${subdir}/${dataset}" | ||
| if [ -f "$file_path" ]; then | ||
| echo "Adding: $file_path" | ||
| train_file_list+=("'$file_path'") | ||
| fi | ||
| done | ||
| done | ||
|
|
||
| # Join with comma to form Python list string | ||
| IFS=, | ||
| train_files="[${train_file_list[*]}]" | ||
| unset IFS | ||
|
|
||
| echo "Total training files found: ${#train_file_list[@]}" | ||
|
|
||
| # Test Data Configuration | ||
| TEST_DATA_DIR=/lustrefs/users/haonan.li/data/k2/test_12k_len | ||
| # Math (test) | ||
| math_test_path=${TEST_DATA_DIR}/math__math_500.parquet | ||
| aime_test_path=${TEST_DATA_DIR}/math__aime_repeated_8x_240.parquet | ||
| aime25_test_path2=${TEST_DATA_DIR}/math__aime2025_repeated_8x_240.parquet | ||
| amc_test_path=${TEST_DATA_DIR}/math__amc_repeated_4x_332.parquet | ||
|
|
||
| # Code (test) | ||
| humaneval_test_path=${TEST_DATA_DIR}/codegen__humaneval_164.parquet | ||
| mbpp_test_path=${TEST_DATA_DIR}/codegen__mbpp_500.parquet | ||
| livecodebench_test_path=${TEST_DATA_DIR}/codegen__livecodebench_279.parquet | ||
|
|
||
| # Logic (test) | ||
| zebralogic_test_path=${TEST_DATA_DIR}/logic__zebra_puzzle_dataset_200.parquet | ||
| reasoninggym_test_path=${TEST_DATA_DIR}/logic__reasoning_gym_425.parquet | ||
| synlogic_test_path=${TEST_DATA_DIR}/logic__synlogic_217.parquet | ||
| arcagi1_test_path=${TEST_DATA_DIR}/logic__arcagi1_400.parquet | ||
| # graph_test_path=${TEST_DATA_DIR}/logic__graph_logical_dataset_150_sampled_77.parquet | ||
| # ordering_puzzle_test_path=${TEST_DATA_DIR}/logic__ordering_puzzle_dataset_150_sampled_100.parquet | ||
|
|
||
| # Table (test) | ||
| multihier_test_path=${TEST_DATA_DIR}/table__multihier_336.parquet | ||
| hitab_test_path=${TEST_DATA_DIR}/table__hitab_1k.parquet | ||
|
|
||
| # Stem (test) | ||
| nemotron_test_path=${TEST_DATA_DIR}/stem__nemotron_100.parquet | ||
| gpqa_diamond_test_path=${TEST_DATA_DIR}/stem__gpqa_diamond_198.parquet | ||
| supergpqa_test_path=${TEST_DATA_DIR}/stem__supergpqa_1k.parquet | ||
|
|
||
| # Instruction follow (test) | ||
| if_test_path=${TEST_DATA_DIR}/ood__ifeval_100.parquet | ||
| if_bench_test_path=${TEST_DATA_DIR}/ifbench_800.parquet | ||
|
|
||
| # Focused data mixture (math, code, stem) | ||
| # train_files="['${math_train_path1}','${math_train_path2}','${leetcode_train_path}','${livecodebench_train_path}','${primeintellect_train_path}','${taco_train_path}','${webinstruct_train_path}','${nemotron_train_path}']" | ||
| # test_files="['${math_test_path}','${aime_test_path}','${aime25_test_path2}','${amc_test_path}','${humaneval_test_path}','${mbpp_test_path}','${livecodebench_test_path}','${nemotron_test_path}','${gpqa_diamond_test_path}','${supergpqa_test_path}']" | ||
|
|
||
| # Full data mixture (uncomment to use) | ||
| test_files="['${math_test_path}','${aime_test_path}','${aime25_test_path2}','${amc_test_path}','${humaneval_test_path}','${mbpp_test_path}','${livecodebench_test_path}','${zebralogic_test_path}','${synlogic_test_path}','${reasoninggym_test_path}','${arcagi1_test_path}','${multihier_test_path}','${hitab_test_path}','${nemotron_test_path}','${gpqa_diamond_test_path}','${supergpqa_test_path}','${if_test_path}','${if_bench_test_path}']" # | ||
|
|
||
|
|
||
| # =================== Model =================== | ||
| # BASE_MODEL=/lustrefs/users/runner/workspace/checkpoints/huggingface/sft/mid4_rope_sft_reasoning_am_251117/checkpoints/checkpoint_0002250 # AM-Think SFT | ||
| BASE_MODEL=/lustrefs/users/varad.pimpalkhute/data_process/K2-Plus-Oss-Instruct-mid4 # Final Instruct SFT (after stg4_iter 10k) | ||
| # BASE_MODEL=/lustrefs/users/varad.pimpalkhute/data_process/K2-Plus-Instruct-mid4 # Instruct SFT, after stg4_iter 7k | ||
| # BASE_MODEL=/lustrefs/users/taylor.killian/Reasoning360/checkpoints/k2plus_rl/grpo-focused-k2p-finalInstruct-temp1.2-wOmni-fix2-403906/global_step_300/actor/huggingface | ||
|
|
||
| # =================== Logging =================== | ||
| WANDB_PROJECT=k2plus_rl | ||
| WANDB_EXPERIMENT_NAME=${SLURM_JOB_NAME}-${SLURM_JOB_ID} #-${BASE_MODEL##*/} | ||
|
|
||
| # If RESUME_CKPT_DIR is not empty, resume from the checkpoint | ||
| if [[ -n "$RESUME_CKPT_DIR_NAME" ]]; then | ||
| WANDB_EXPERIMENT_NAME="$RESUME_CKPT_DIR_NAME" | ||
| fi | ||
|
|
||
|
|
||
| # =================== Ray start =================== | ||
| # ray stop at all nodes | ||
| srun --nodes=$worker_num --ntasks=$worker_num --ntasks-per-node=1 ${CONDA_BIN_PATH}ray stop | ||
|
|
||
| sleep 10 | ||
| # Remove existing Ray cluster | ||
| srun --nodes=$worker_num --ntasks=$worker_num --ntasks-per-node=1 rm -rf /tmp/ray/ray_current_cluster | ||
|
|
||
| # Start Ray head node | ||
| srun --nodes=1 --ntasks=1 -w "$head_node" --export=ALL \ | ||
| env -u ROCR_VISIBLE_DEVICES -u HIP_VISIBLE_DEVICES \ | ||
| ${CONDA_BIN_PATH}ray start --head --node-ip-address="$head_node_ip" --port=$port \ | ||
| --num-cpus "${SLURM_CPUS_PER_TASK}" --num-gpus 8 --include-dashboard=True --block & | ||
|
|
||
| sleep 10 | ||
|
|
||
| # Start Ray worker nodes | ||
| for ((i = 1; i < worker_num; i++)); do | ||
| node_i=${nodes[$i]} | ||
| echo "Starting WORKER $i at $node_i" | ||
| srun --nodes=1 --ntasks=1 -w "$node_i" --export=ALL \ | ||
| env -u ROCR_VISIBLE_DEVICES -u HIP_VISIBLE_DEVICES \ | ||
| ${CONDA_BIN_PATH}ray start --address "$address_head" \ | ||
| --num-cpus "${SLURM_CPUS_PER_TASK}" --num-gpus 8 --block & | ||
| done | ||
| sleep 10 | ||
|
|
||
|
|
||
| # =================== RL Config =================== | ||
| # Note, we borrowed the config format from DAPO while here disabled all DAPO features to run the naive RL baseline. | ||
|
|
||
| adv_estimator=grpo | ||
|
|
||
| use_kl_in_reward=False | ||
| kl_coef=0.0 | ||
| use_kl_loss=False | ||
| kl_loss_coef=0.0 | ||
|
|
||
| clip_ratio_low=0.2 | ||
| clip_ratio_high=0.28 | ||
|
|
||
| max_prompt_length=$((1024 * 4)) | ||
| max_response_length=$((1024 * 64)) | ||
| enable_overlong_buffer=False | ||
| overlong_buffer_len=$((1024 * 12)) | ||
| overlong_penalty_factor=1.0 | ||
|
|
||
| loss_agg_mode="token-mean" | ||
| rollout_dtype="float16" | ||
|
|
||
| enable_filter_groups=False | ||
| filter_groups_metric=acc | ||
| max_num_gen_batches=10 | ||
| train_prompt_bsz=256 # on-policy model update batchsize: train_prompt_bsz * rollout.n | ||
| gen_prompt_bsz=$((train_prompt_bsz * 1)) | ||
| n_resp_per_prompt=16 | ||
| train_prompt_mini_bsz=256 # model grad update batchsize | ||
|
|
||
| # Algorithm | ||
| temperature=1.2 | ||
| val_temperature=1.0 | ||
| top_p=1.0 | ||
| top_k=-1 # 0 for HF rollout, -1 for vLLM rollout | ||
|
|
||
| # Training config | ||
| sp_size=16 # Reduced from 32 to reduce memory pressure | ||
| gen_tp=4 | ||
| gen_max_num_seqs=1024 # Reduced from 1024 to reduce memory pressure | ||
| infer_micro_batch_size=null | ||
| train_micro_batch_size=null | ||
| use_dynamic_bsz=True | ||
| actor_ppo_max_token_len=$(( (max_prompt_length + max_response_length) * 1)) # increase this to speed up model forward & backward but note memory overflow | ||
| infer_ppo_max_token_len=$(( (max_prompt_length + max_response_length) * 1)) # increase this to speed up modelforward, but note memory overflow | ||
| offload=True | ||
|
|
||
| # =================== Start RL training =================== | ||
| "${CONDA_BIN_PATH}python" -m recipe.dapo.main_dapo \ | ||
| --config-path=config \ | ||
| --config-name="dapo_fsdp_config.yaml" \ | ||
| algorithm.adv_estimator=${adv_estimator} \ | ||
| algorithm.use_kl_in_reward=${use_kl_in_reward} \ | ||
| algorithm.kl_ctrl.kl_coef=${kl_coef} \ | ||
| algorithm.filter_groups.enable=${enable_filter_groups} \ | ||
| algorithm.filter_groups.metric=${filter_groups_metric} \ | ||
| algorithm.filter_groups.max_num_gen_batches=${max_num_gen_batches} \ | ||
| data.train_files="$train_files" \ | ||
| data.val_files="$test_files" \ | ||
| data.prompt_key=prompt \ | ||
| data.truncation='right' \ | ||
| data.max_prompt_length=${max_prompt_length} \ | ||
| data.max_response_length=${max_response_length} \ | ||
| data.train_batch_size=${train_prompt_bsz} \ | ||
| data.gen_batch_size=${gen_prompt_bsz} \ | ||
| actor_rollout_ref.nccl_timeout=${NCCL_TIMEOUT_SECONDS} \ | ||
| actor_rollout_ref.actor.checkpoint.save_contents=['model','optimizer','extra','hf_model'] \ | ||
| actor_rollout_ref.actor.use_kl_loss=${use_kl_loss} \ | ||
| actor_rollout_ref.actor.kl_loss_coef=${kl_loss_coef} \ | ||
| actor_rollout_ref.actor.clip_ratio_low=${clip_ratio_low} \ | ||
| actor_rollout_ref.actor.clip_ratio_high=${clip_ratio_high} \ | ||
| actor_rollout_ref.actor.clip_ratio_c=10.0 \ | ||
| actor_rollout_ref.actor.use_dynamic_bsz=${use_dynamic_bsz} \ | ||
| actor_rollout_ref.actor.ppo_max_token_len_per_gpu=${actor_ppo_max_token_len} \ | ||
| actor_rollout_ref.actor.strategy="fsdp2" \ | ||
| actor_rollout_ref.actor.optim.lr=5e-7 \ | ||
| actor_rollout_ref.actor.optim.lr_warmup_steps=10 \ | ||
| actor_rollout_ref.actor.optim.weight_decay=0.1 \ | ||
| actor_rollout_ref.actor.optim.warmup_style=constant \ | ||
| actor_rollout_ref.actor.optim.min_lr_ratio=0. \ | ||
| actor_rollout_ref.actor.ppo_mini_batch_size=${train_prompt_mini_bsz} \ | ||
| actor_rollout_ref.actor.ppo_micro_batch_size=${train_micro_batch_size} \ | ||
| actor_rollout_ref.actor.fsdp_config.param_offload=${offload} \ | ||
| actor_rollout_ref.actor.fsdp_config.optimizer_offload=${offload} \ | ||
| actor_rollout_ref.actor.entropy_coeff=0 \ | ||
| actor_rollout_ref.actor.grad_clip=1.0 \ | ||
| actor_rollout_ref.actor.loss_agg_mode=${loss_agg_mode} \ | ||
| actor_rollout_ref.actor.ulysses_sequence_parallel_size=${sp_size} \ | ||
| actor_rollout_ref.actor.fsdp_config.fsdp_size=-1 \ | ||
| actor_rollout_ref.actor.fsdp_config.forward_prefetch=True \ | ||
| actor_rollout_ref.actor.entropy_checkpointing=True \ | ||
| actor_rollout_ref.ref.log_prob_use_dynamic_bsz=${use_dynamic_bsz} \ | ||
| actor_rollout_ref.ref.log_prob_max_token_len_per_gpu=${infer_ppo_max_token_len} \ | ||
| actor_rollout_ref.ref.log_prob_micro_batch_size=${infer_micro_batch_size} \ | ||
| actor_rollout_ref.ref.fsdp_config.param_offload=${offload} \ | ||
| actor_rollout_ref.ref.ulysses_sequence_parallel_size=${sp_size} \ | ||
| actor_rollout_ref.ref.entropy_from_logits_with_chunking=True \ | ||
| actor_rollout_ref.rollout.name=vllm \ | ||
| actor_rollout_ref.rollout.n=${n_resp_per_prompt} \ | ||
| actor_rollout_ref.rollout.log_prob_use_dynamic_bsz=${use_dynamic_bsz} \ | ||
| actor_rollout_ref.rollout.log_prob_max_token_len_per_gpu=${infer_ppo_max_token_len} \ | ||
| actor_rollout_ref.rollout.gpu_memory_utilization=0.7 \ | ||
| actor_rollout_ref.rollout.log_prob_micro_batch_size=${infer_micro_batch_size} \ | ||
| actor_rollout_ref.rollout.tensor_model_parallel_size=${gen_tp} \ | ||
| actor_rollout_ref.rollout.enable_chunked_prefill=True \ | ||
| actor_rollout_ref.rollout.max_num_batched_tokens=${infer_ppo_max_token_len} \ | ||
| actor_rollout_ref.rollout.max_num_seqs=${gen_max_num_seqs} \ | ||
| actor_rollout_ref.rollout.disable_log_stats=False \ | ||
| actor_rollout_ref.rollout.enforce_eager=False \ | ||
| actor_rollout_ref.rollout.enable_prefix_caching=True \ | ||
| actor_rollout_ref.rollout.temperature=${temperature} \ | ||
| actor_rollout_ref.rollout.top_p=${top_p} \ | ||
| actor_rollout_ref.rollout.top_k=${top_k} \ | ||
| actor_rollout_ref.rollout.val_kwargs.top_k=${top_k} \ | ||
| actor_rollout_ref.rollout.val_kwargs.top_p=${top_p}\ | ||
| actor_rollout_ref.rollout.val_kwargs.temperature=${val_temperature} \ | ||
| actor_rollout_ref.rollout.val_kwargs.n=1 \ | ||
| actor_rollout_ref.rollout.val_kwargs.do_sample=True \ | ||
| actor_rollout_ref.model.path=$BASE_MODEL \ | ||
| actor_rollout_ref.model.use_remove_padding=True \ | ||
| actor_rollout_ref.rollout.multi_turn.enable=False \ | ||
| actor_rollout_ref.rollout.mode="sync" \ | ||
| +actor_rollout_ref.model.override_config.attention_dropout=0. \ | ||
| +actor_rollout_ref.model.override_config.embd_pdrop=0. \ | ||
| +actor_rollout_ref.model.override_config.resid_pdrop=0. \ | ||
| actor_rollout_ref.model.enable_gradient_checkpointing=True \ | ||
| actor_rollout_ref.model.enable_activation_offload=True \ | ||
| actor_rollout_ref.model.use_liger=True \ | ||
| reward_model.reward_manager=async_multi_process \ | ||
| reward_model.overlong_buffer.enable=${enable_overlong_buffer} \ | ||
| reward_model.overlong_buffer.len=${overlong_buffer_len} \ | ||
| reward_model.overlong_buffer.penalty_factor=${overlong_penalty_factor} \ | ||
| trainer.logger=['console','wandb'] \ | ||
| trainer.project_name=${WANDB_PROJECT} \ | ||
| trainer.experiment_name=${WANDB_EXPERIMENT_NAME} \ | ||
| trainer.val_before_train=True \ | ||
| trainer.n_gpus_per_node=8 \ | ||
| trainer.nnodes=$worker_num \ | ||
| trainer.save_freq=10 \ | ||
| trainer.test_freq=5 \ | ||
| trainer.total_epochs=5 \ | ||
| trainer.log_val_generations=50 \ | ||
| trainer.resume_mode=auto \ | ||
| trainer.max_actor_ckpt_to_keep=3 |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
imo, it would be ideal to create another directory called cispo instead of adding modifications in dapo