Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added 8382/Ershov/lb/4/8.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
59 changes: 59 additions & 0 deletions 8382/Ershov/lb/4/main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.models import Sequential
import numpy as np
from PIL import Image
from tensorflow.keras import optimizers
from tensorflow.keras.preprocessing.image import load_img
from tensorflow.keras.preprocessing.image import img_to_array


mnist = tf.keras.datasets.mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images / 255.0
test_images = test_images / 255.0
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)

def build_model():
model = Sequential()
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dense(10, activation='softmax'))

return model

def get_image(filename):
img = load_img(filename, color_mode='grayscale', target_size=(28, 28))
img = img_to_array(img)
img = img.reshape(1, 28, 28, 1)
img = img.astype('float32') / 255.0
return img

model = build_model()
model.compile(optimizer=optimizers.Adam(learning_rate=0.1),loss='categorical_crossentropy', metrics=['accuracy'])
history = model.fit(train_images, train_labels, epochs=5, batch_size=128, validation_data=(test_images, test_labels))

plt.title('Training and test accuracy Adam 0.1')
plt.plot(history.history['accuracy'], 'r', label='Training acc')
plt.plot(history.history['val_accuracy'], 'b', label='Validation acc')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
#plt.show()

plt.plot(history.history['loss'], 'r', label='Training loss')
plt.plot(history.history['val_loss'], 'b', label='Validation loss')
plt.title('Training and validation accuracy Adam 0.1')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
#plt.show()

img = get_image("8.png")
digit = np.argmax(model.predict(img), axis=-1)
print(digit[0])
Binary file added 8382/Ershov/lb/4/report.pdf
Binary file not shown.