Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
82 changes: 82 additions & 0 deletions 8382/Gordiyenko/lb/7/main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
import numpy as np
from keras.datasets import imdb
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM,Conv1D,MaxPooling1D,Dropout
from keras.layers.embeddings import Embedding
from keras.preprocessing import sequence
import matplotlib.pyplot as plt

top_words = 10000

(training_data, training_targets), (testing_data, testing_targets) = imdb.load_data(num_words=10000)
data = np.concatenate((training_data, testing_data), axis=0)
targets = np.concatenate((training_targets, testing_targets), axis=0)

max_review_length = 500
training_data = sequence.pad_sequences(training_data, maxlen=max_review_length)
testing_data = sequence.pad_sequences(testing_data, maxlen=max_review_length)
embedding_vecor_length = 32

def build_model_1():
model = Sequential()
model.add(Embedding(top_words, embedding_vecor_length, input_length=max_review_length))
model.add(Dropout(0.2))
model.add(LSTM(100))
model.add(Dropout(0.2))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model

def build_model_2():
model = Sequential()
model.add(Embedding(top_words, embedding_vecor_length, input_length=max_review_length))
model.add(Conv1D(filters=32, kernel_size=3, padding='same', activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.2))
model.add(LSTM(100))
model.add(Dropout(0.2))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model

def vectorize(sequences, dimension=500):
results = np.zeros((len(sequences), dimension))
for i, sequence in enumerate(sequences):
results[i, sequence] = 1
return results

def final_pred(model_1,model_2,text):
pred_1 = model_1.predict(text)
pred_2 = model_2.predict(text)
result = 0.5*(pred_1+pred_2)
if result >= 0.5:
print('Отзыв хороший')
else:
print('Отзыв плохой')

def evaluation(model_1,model_2,testing_data):
scores_1 = model_1.predict(testing_data)
scores_2 = model_2.predict(testing_data)
res = 0.5*(scores_1+scores_2)
res = np.round(res)
return res

if __name__ == '__main__':
model_1 = build_model_1()
model_1.fit(training_data, training_targets, validation_data=(testing_data, testing_targets), epochs=3, batch_size=64)
scores_1 = model_1.evaluate(testing_data, testing_targets, verbose=0)
model_2 = build_model_2()
model_2.fit(training_data, training_targets, validation_data=(testing_data, testing_targets), epochs=3, batch_size=64)
scores_2 = model_2.evaluate(testing_data, testing_targets, verbose=0)
print("Accuracy: %.2f%%" % (scores_1[1] * 100))
print("Accuracy: %.2f%%" % (scores_2[1] * 100))
result = evaluation(model_1,model_2,testing_data)


text = "A brilliant masterpiece with unique style. It starts rather slow, \
but half time passed it burns the ground. It has everithing you want. \
Humour, Fantastic style, twisted plot, cool and memorable characters \
and action."
text_vec = [text[i] for i in range(len(text)) if i < 500]
final_pred(model_1,model_2,text_vec)
Binary file added 8382/Gordiyenko/lb/7/report.pdf
Binary file not shown.