Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
80 changes: 80 additions & 0 deletions 8382/Gordiyenko/lb/3/main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
import numpy as np
from tensorflow.keras.layers import Dense
from tensorflow.keras.models import Sequential
from tensorflow.keras.datasets import boston_housing
import matplotlib.pyplot as plt
import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'


def build_model():
model = Sequential()
model.add(Dense(64, activation='relu', input_shape=(train_data.shape[1],)))
model.add(Dense(64, activation='relu'))
model.add(Dense(1))
model.compile(optimizer='rmsprop', loss='mse', metrics=['mean_absolute_error'])
return model


(train_data, train_targets), (test_data, test_targets) = boston_housing.load_data()

mean = train_data.mean(axis=0)
train_data -= mean
std = train_data.std(axis=0)
train_data /= std

test_data -= mean
test_data /= std


def learn(num):
k = num
num_val_samples = len(train_data) // k
num_epochs = 20
all_scores = []

mean_loss = []
mean_mae = []
mean_val_loss = []
mean_val_mae = []

for i in range(k):
print('processing fold #', i+1)
val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples]
val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples]
partial_train_data = np.concatenate([train_data[:i * num_val_samples], train_data[(i + 1) * num_val_samples:]],
axis=0)
partial_train_targets = np.concatenate(
[train_targets[:i * num_val_samples], train_targets[(i + 1) * num_val_samples:]], axis=0)
model = build_model()
H = model.fit(partial_train_data, partial_train_targets, epochs=num_epochs, batch_size=1,
validation_data=(val_data, val_targets), verbose=0)

# print(H.history.keys())
mean_val_mae.append(H.history['val_mean_absolute_error'])
mean_mae.append(H.history['mean_absolute_error'])

mean_val_loss.append(H.history['val_loss'])
mean_loss.append(H.history['loss'])

plt.plot(np.mean(mean_mae, axis=0), 'g')
plt.plot(np.mean(mean_val_mae, axis=0), 'b')
plt.title('Mean model mae for ' + str(val) + ' folds')
plt.ylabel('mae')
plt.xlabel('Epochs')
plt.legend(['Training', 'Validation'], loc='upper left')
plt.show()

plt.plot(np.mean(mean_loss, axis=0), 'g')
plt.plot(np.mean(mean_val_loss, axis=0), 'b')
plt.title('Mean model loss for ' + str(val) + ' folds')
plt.ylabel('loss')
plt.xlabel('Epochs')
plt.legend(['Training', 'Validation'], loc='upper left')
plt.show()


if __name__ == '__main__':
for val in [2, 4, 6, 8]:
learn(val)
Binary file added 8382/Gordiyenko/lb/3/report.pdf
Binary file not shown.