If our project helps you, please give us a star ⭐ on GitHub to support us. 🧙🧙
2025-08-10🎉 We are happy to announce that we release our code.2025-04-23🌟 We released the paper VideoMark: A Distortion-Free Robust Watermarking Framework for Video Diffusion Models.
Basic Dependencies:
- Python >= 3.10
- ··· Then run:
pip install -r requirements.txtpython PRC_key_gen.py --hight 512 --width 512 --fpr 0.01 --prc_t 3python embedding_and_extraction.py \
--model_name i2vgen-xl \
--num_frames 16 \
--num_bit 512 \
--num_inference_steps 50 \
--output_dir <your save dir> \
--keys_path <your keys path>\python temporal_tamper.py
--model_name i2vgen-xl \
--num_bit 512 \
--num_inference_steps 50 \
--video_frames_dir <your dir> \
--keys_path <your keys path> \To evaluate the quality of watermarked videos, you can perform both objective and subjective assessments.
We recommend using VBench — VBench: Comprehensive Benchmark Suite for Video Generative Models
For subjective assessments, we provide sample videos and guidelines in the following folder: eval_quality:
cd eval_qualityIf you find VideoMark useful for your research and applications, please cite using this BibTeX:
@article{hu2025videomark,
title={VideoMark: A Distortion-Free Robust Watermarking Framework for Video Diffusion Models},
author={Hu, Xuming and Li, Hanqian and Li, Jungang and Liu, Aiwei},
journal={arXiv preprint arXiv:2504.16359},
year={2025}
}