Chanhwi Jeong · Inhwan Bae · Jin-Hwi Park* · Hae-Gon Jeon*
ICCV 2025 Highlight Paper
* Corresponding Authors
📄 ICCV 2025 Paper 🌐 Project Page 💻 Official Code 🧩 Poster
TestPromptDC introduces a test-time prompt tuning framework for zero-shot depth completion across varying sensors and environments, allowing foundation models for monocular depth estimation to achieve absolute-scale predictions without ground-truth fine-tuning.
- Visit IBIMS-1 Website to download the dataset.
- After downloading, your folder structure should look like:
- Follow the instructions at this repository to download the DDAD dataset.
- Once downloaded, place the files according to the following structure:
- For DDAD testing, set the
--dataset_pathargument to the location ofddad_train_valor the folder containing theddadstructure above. - For IBIMS-1, set the
--dataset_pathargument to theibims1folder.
Run the following command, replacing each bracketed item with the appropriate value:
- --gpu: Specify the GPU number (e.g.,
0for the first GPU). - --mode: Select either
VP(visual prompt mode) orFT(fine-tuning mode). - --dataset: Choose
ibimsorddad. - --dataset_path: Provide the path to your dataset folder.
Example: python main.py --gpu 0 --mode VP --dataset ddad --dataset_path /path/to/ddad
We will soon update download and configuration instructions for the following datasets:
- NYU Depth V2
- VOID
- KITTI Depth Completion
- nuScenes Depth
Quick Experiments: If you want to quickly test our framework or explore related setups, check out the following repositories:
🔹 DepthPrompting — Visual prompt tuning for depth-aware foundation models
🔹 UniDC — Universal Depth Completion baseline across sensors and environments
@InProceedings{Jeong_2025_ICCV,
author = {Jeong, Chanhwi and Bae, Inhwan and Park, Jin-Hwi and Jeon, Hae-Gon},
title = {Test-Time Prompt Tuning for Zero-Shot Depth Completion},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2025},
pages = {9443--9454}
}