This is a Python library for handling Near infrared (NIR) spectral calibration.
Use the package manager pip to install pynir.
pip install pynirIn addition, we also provide an online version at this link
- Readers: Import .CSV and .SPA files through
InnoSpectraNIRReaderandspaReader. - Regression: PLS, etc.
- Classification: PLSDA, etc.
- Feature Selection: MCUVE, RT, etc.
- Outlier Detection
- Calibration Transfer: PDS, SST, BS, PFCE variants
- Data Preprocessing: SNV, CWT, MSC, etc.
from pynir.utils import simulateNIR
spc, conc = simulateNIR()from pynir.utils import simulateNIR
from pynir.Calibration import pls
# establish PLS model
n_components = 10
plsModel = pls(n_components = n_components)
plsModel.fit(X,y)
yhat = plsModel.predict(X)# simulate NIR data
from pynir.utils import simulateNIR
from pynir.Calibration import plsda
nclass = 4
X,y,wv = simulateNIR(nSample=200,n_components=10,refType=nclass, noise=1e-5)
# estabilish PLS model
n_components = 10
plsdaModel = plsda(n_components = n_components)
plsdaModel.fit(X,y)
yhat = plsdaModel.predict(X)# Feature selection
from pynir.utils import simulateNIR
from pynir.Calibration import pls
from pynir.FeatureSelection import MCUVE
# simulate NIR data
X,y,wv = simulateNIR(nSample=200,n_components=10,noise=1e-5)
mcModel = MCUVE(X, y, n_components, nrep=nrep).fit()
featureSelected_MC_UVE = mcModel.featureRank[:nSel]import numpy as np
import matplotlib.pyplot as plt
from pynir.utils import simulateNIR
from pynir.OutlierDetection import outlierDetection_PLS
# simulate NIR data
X,y,wv = simulateNIR(nSample=200,n_components=10,noise=1e-5)
ODModel = outlierDection_PLS(ncomp=3)
Q, Tsq, Q_conf, Tsq_conf, idxOutlier = ODModel.fit(X, y).detect(X,y)
ODModel.plot_HotellingT2_Q(Q, Tsq, Q_conf, Tsq_conf)from pynir.utils import simulateNIR_calibrationTransfer
from pynir.Calibration import pls, regresssionReport
from pynir.CalibrationTransfer import PDS,SST, BS
import matplotlib.pyplot as plt
import numpy as np
# Simulate NIR spectra for calibration transfer
nSample = 100
X1, X2, y, wv = simulateNIR_calibrationTransfer(nSample=nSample,n_components=10,shifts=5e1)
idxTrain,idxTest = train_test_split(np.arange(nSample),test_size=0.6)
idxTransfer,idxTest = train_test_split(idxTest,test_size=0.5)
# Multivariate calibration
n_components = 7
plsModel1 = pls(n_components=n_components).fit(X1[idxTrain,:], y[idxTrain])
yhat1 = plsModel1.predict(X1[idxTest,:],n_components=n_components)
yhat2= plsModel1.predict(X2[idxTest,:],n_components=n_components)
fig, ax = plt.subplots(2,sharex=True,figsize=(8,16))
plsModel1.plot_prediction(y[idxTest], yhat1,title = "First", ax = ax[0])
plsModel1.plot_prediction(y[idxTest], yhat2, title= "Second", ax = ax[1])
# Calibration transfer on spectra
## PDS
X2_PDS = PDS(halfWindowSize=3).fit(X1[idxTransfer,:], X2[idxTransfer,:]).transform(X2[idxTest,:])
yhat2_PDS= plsModel1.predict(X2_PDS,n_components=n_components)
plsModel1.plot_prediction(y[idxTest], yhat2_PDS, title= "PDS")
fig, ax = plt.subplots()
ax.plot(wv, np.transpose(X2_PDS))
## SST
X2_SST = SST(n_components=n_components).fit(X1[idxTransfer,:], X2[idxTransfer,:]).transform(X2[idxTest,:])
yhat2_SST= plsModel1.predict(X2_SST,n_components=n_components)
plsModel1.plot_prediction(y[idxTest], yhat2_SST, title= "SST")
fig, ax = plt.subplots()
ax.plot(wv, np.transpose(X2_SST))
# Calibration transfer on prediction
## BS
yhat2_BS = BS().fit(yhat1, yhat2).transform(yhat2)
plsModel1.plot_prediction(y[idxTest], yhat2_BS, title= "BS")from pynir.utils import simulateNIR_calibrationTransfer
from pynir.Calibration import pls, regresssionReport
from pynir.CalibrationTransfer import NS_PFCE,SS_PFCE,FS_PFCE,MT_PFCE
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
import time
nSample = 100
X1, X2, y, wv = simulateNIR_calibrationTransfer(nSample=nSample,n_components=10,shifts=5e1)
idxTrain,idxTest = train_test_split(np.arange(nSample),test_size=0.6)
idxTransfer,idxTest = train_test_split(idxTest,test_size=0.5)
n_components = 7
plsModel1 = pls(n_components=n_components).fit(X1[idxTrain,:], y[idxTrain])
## PFCE
thres = 0.98
constrType = 1
tic = time.time()
b1 = plsModel1.model['B'][:,-1]
NS_PFCE_model = NS_PFCE(thres=thres, constrType=constrType).fit(X1[idxTransfer,:],X2[idxTransfer,:],b1)
yhat2_NS_PFCE = NS_PFCE_model.transform(X2[idxTest,:])
plsModel1.plot_prediction(y[idxTest], yhat2_NS_PFCE, title= "NS-PFCE")
fig, ax = plt.subplots()
ax.plot(wv, NS_PFCE_model.b2.x[1:])
ax.set_xlabel("wavelength (nm)")
ax.set_ylabel("Regression Coefficients")
ax.set_title("NS-PFCE")
print("cost {:.2f} seconds for NS-PFCE".format(time.time()-tic))
tic = time.time()
b1 = plsModel1.model['B'][:,-1]
SS_PFCE_model = SS_PFCE(thres=thres, constrType=constrType).fit(X2[idxTransfer,:],y[idxTransfer],b1)
yhat2_SS_PFCE = SS_PFCE_model.transform(X2[idxTest,:])
plsModel1.plot_prediction(y[idxTest], yhat2_SS_PFCE, title= "SS-PFCE")
fig, ax = plt.subplots()
ax.plot(wv, SS_PFCE_model.b2.x[1:])
ax.set_xlabel("wavelength (nm)")
ax.set_ylabel("Regression Coefficients")
ax.set_title("SS-PFCE")
print("cost {:.2f} seconds for SS-PFCE".format(time.time()-tic))
tic = time.time()
b1 = plsModel1.model['B'][:,-1]
FS_PFCE_model = FS_PFCE(thres=thres, constrType=constrType).fit(X1[idxTransfer,:],X2[idxTransfer,:],y[idxTransfer],b1)
yhat2_FS_PFCE = FS_PFCE_model.transform(X2[idxTest,:])
plsModel1.plot_prediction(y[idxTest], yhat2_FS_PFCE, title= "FS-PFCE")
fig, ax = plt.subplots()
ax.plot(wv, FS_PFCE_model.b2.x[1:])
ax.set_xlabel("wavelength (nm)")
ax.set_ylabel("Regression Coefficients")
ax.set_title("FS-PFCE")
print("cost {:.2f} seconds for FS-PFCE".format(time.time()-tic))
tic = time.time()
b1 = plsModel1.model['B'][:,-1]
MT_PFCE_model = MT_PFCE(thres=thres, constrType=constrType)
MT_PFCE_model.fit([X1[idxTrain,:],X2[idxTransfer,:]],(y[idxTrain],y[idxTransfer]),b1)
yhat1_MT_PFCE = MT_PFCE_model.transform(X1[idxTest,:],0) # task 1
yhat2_MT_PFCE = MT_PFCE_model.transform(X2[idxTest,:],1) # task 2
fig, ax = plt.subplots(2,sharex=True,figsize=(8,16))
plsModel1.plot_prediction(y[idxTest], yhat1_MT_PFCE, title= "MT-PFCE_First", ax= ax[0])
plsModel1.plot_prediction(y[idxTest], yhat2_MT_PFCE, title= "MT-PFCE_Second", ax= ax[1])
fig, ax = plt.subplots()
ax.plot(wv, MT_PFCE_model.B.x.reshape(2,-1)[:,1:].transpose())
ax.set_xlabel("wavelength (nm)")
ax.set_ylabel("Regression Coefficients")
ax.set_title("MT-PFCE")
print("cost {:.2f} seconds for MT-PFCE".format(time.time()-tic))First, execute
git clone https://github.com/JinZhangLab/pynir.git
cd ./pynir/examplesThen, execute code in your python coding environment or just in terminal as follows:
python Demo1_SimulateNIR.py
python Demo2_Regression.py
python Demo3_Binary_Classification.py
python Demo4_Multiclass_Classification.py
python Demo5_dataPreprocessing.py
python Demo6_outlierDetection.py
python Demo7_FeatureSelection_oneStep
python Demo8_FeatureSelection_multiSteps.py
python Demo9_calibrationTransfer.py
python Demo10_calibrationTransfer_PFCE_simulateNIR.py
python Demo11_calibrationTransfer_PFCE_Tablet.py
python Demo12_calibrationTransfer_PFCE_Corn.py-
Zhang, J.; Cui, X. Y.; Cai, W. S.; Shao, X. G., A variable importance criterion for variable selection in near-infrared spectral analysis. Sci. China Chem. 2018, 62, 271-79.link
-
Zhang J., Li B. Y., Hu Y., Zhou L. X., Wang G. Z., Guo G., Zhang Q. H., Lei S. C., Zhang A. H. A parameter-free framework for calibration enhancement of near-infrared spectroscopy based on correlation constraint [J]. Analytica Chimica Acta, 2021, 1142: 169-178. link
Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
Please make sure to update tests as appropriate.