Skip to content

JerryYINJIATENG/RSTO-platform

Repository files navigation

Real-Time Rolling Stock and Timetable Rescheduling in Urban Rail Transit Systems

The software and data in this repository are a snapshot of the software and data that were used in the research reported on in the paper "Real-Time Rolling Stock and Timetable Rescheduling in Urban Rail Transit Systems" by J. Yin, L. Yang, Z.Liang, et al.

Description

This repository includes illustrative examples, pseudocodes of the algorithm, source codes, computational results, and source data for the experiments presented in the paper, with no conflict of interest. Please note that the source data and codes are available for academic purposes only and cannot be used commercially. We encourage academic researchers to utilize these resources to replicate our findings and build upon our work.

Requirements

For these experiments, the following requirements should be satisfied

  • a PC with at least 16 GB RAM
  • C# run on Windows 10 (with SDK higher than 10.0.150630.0)
  • CPLEX 12.80 Academic version.

Pseudocodes of BRC algorithm and ILS algorithm

Algorithm 1. BRC algorithm to compute the optimal cost of big arcs

Algorithm 2. Improved label setting algorithm

Illustrative examples to compute BAM model with different dual costs

Consider the following example: The network involves four stations indexed by 0 to 3; the planned running times are 2 (between station 0 and station 1), 3 (between station 1 and station 2) and 2 (between station 2 and station 3), respectively; and the slack time is 1 for each section.

In the example, we consider only one train, and the following input: Input

Consider that the event time for the beginning/ending of this big arc is: $t_{e_0}=3$, $t_{e_3}=10$. Now let’s consider the calculation of optimal values of $t_{e_1}$ and $t_{e_2}$ according to the values of $q_e$ using the propositions specified in the paper.

Example 1: Example1

Example 2: Example2

Example 3: Example3

Parameters in the experiments

There are a total of 23 stations in Beijing metro line 1. Among these stations, there are six stations and two depots that allow trains to turn their directions. The names of these stations are BJ, YQL, GZF, XD, WFJ and GM. The names of the tweo depots are GY deopt and WS depot.

Line1

The basic operational parameters, involving running time between two stations, dwelling time at the platforms, minimum turnaround time, safety headway time and slack time, etc.

  • Number of stations $|I|$: 23

  • Number of depots $|D|$: 2, located at GY station and WS station

  • Minimum headway $\bar{h}$: 60 (unit: s)

  • Turnaround time $T_{turn}$: 150 (unit: s)

  • Slack travel time $\epsilon_e$: 10 (unit: s)

  • Planned travel time of each section (peak-hour period): 200, 150, 150, 120, 140, 150, 110, 100, 100, 120, 60, 120, 110, 90, 90, 90, 110, 120, 90, 120, 140, 120 (unit: s)

    Section GY-GC GC-BJ BJ-BBS BBS-YQL YQL-WKS WKS-WSK WSL-GZF GZF-JB JB-MXD MXD-NLSL NLSL-FXM FXM-XD XD-TMX TMX-TMD TMD-WFJ WFJ-DD DD-JGM JGM - YAL YAL-GM GM-DWL DWL-SH SH-SHD
    Up-direction 200 150 150 120 140 150 110 100 100 120 80 120 110 90 90 90 110 120 90 120 140 120
    Down-direction 200 150 150 120 140 150 110 100 100 120 60 120 110 90 90 90 110 120 90 120 140 120
  • Planned dwelling time of each station (peak-hour period): 20, 30, 30, 25, 35, 40, 35, 45, 50, 30, 27, 50, 44, 26, 28, 30, 45, 45, 30, 45, 45, 30, 20 (unit: s)

    Station GY GC BJ BBS YQL WKS WSL GZF JB MXD NLSL FXM XD TMX TMD WFJ DD JGM YAL GM DWL SH SHD
    Up-direction 20 30 30 25 35 40 35 45 50 30 27 50 44 26 28 30 45 45 30 45 45 30 20
    Down-direction 20 30 30 25 35 40 35 45 50 30 27 50 44 26 28 30 45 45 30 45 45 30 20
  • Planned travel time of each section (off-peak-hour period): 210, 160, 150, 120, 150, 150, 120, 100, 100, 120, 70, 120, 110, 90, 90, 100, 110, 120, 90, 120, 140, 130 (unit: s)

    Section GY-GC GC-BJ BJ-BBS BBS-YQL YQL-WKS WKS-WSK WSL-GZF GZF-JB JB-MXD MXD-NLSL NLSL-FXM FXM-XD XD-TMX TMX-TMD TMD-WFJ WFJ-DD DD-JGM JGM - YAL YAL-GM GM-DWL DWL-SH SH-SHD
    Up-direction 210 160 150 120 150 150 120 100 100 120 80 120 110 90 90 100 110 120 90 120 140 130
    Down-direction 210 160 150 120 150 150 120 100 100 120 70 120 110 90 90 100 110 120 90 120 140 130
  • Planned dwelling time of each station (off-peak-hour period): 20, 30, 30, 25, 35, 35, 30, 35, 40, 30, 27, 40, 44, 26, 28, 30, 45, 30, 30, 30, 30, 30, 20 (unit: s)

    Station GY GC BJ BBS YQL WKS WSL GZF JB MXD NLSL FXM XD TMX TMD WFJ DD JGM YAL GM DWL SH SHD
    Up-direction 20 30 30 25 35 35 30 35 40 30 27 40 44 26 28 30 45 30 30 30 30 30 20
    Down-direction 20 30 30 25 35 35 30 35 40 30 27 40 44 26 28 30 45 30 30 30 30 30 20

Results

Disaggrated results for Table 3 (Average performance of four rescheduling strategies over the 30 instances)

Instance Number of canceled events Total delay time ($\times 10^3$) Computation time (second) Number of canceled events Total delay time ($\times 10^3$) Computation time(second) Number of canceled events Total delay time ($\times 10^3$) Computation time(second) Number of canceled events Total delay time ($\times 10^3$) Computation time(second) Total number of events
Strategy 1 Strategy 2 Strategy 3 Strategy 4
Small-scale instances
I_1 398 94.2 1.88 298 75.8 2.52 202 86.3 3.55 178 70.4 3.58 829
I_2 102 117.2 2.13 94 90.1 2.34 78 102.4 3.92 66 95 4.1 1010
I_3 128 121.2 1.08 122 94.4 2.49 100 111.3 2.78 88.4 88.4 2.88 688
I_4 137 122.3 1.98 135 90.2 2.20 104 149.8 2.89 86 80.2 3.01 792
I_5 252 105.8 2.21 236 72.3 2.98 108 92.5 3.09 100 72.3 3.12 1002
I_6 1104 84.6 8.60 1010 68.1 12.1 563 87.3 12.0 524 65.9 12.5 3247
I_7 897 91.3 34.5 803 70.5 38.8 481 95.5 34.5 488 60.3 40.4 3108
I_8 674 131.6 37.3 662 99 59.0 403 132.0 42.8 378 89 62.3 2928
I_9 889 117.1 55.3 784 75.7 78.1 442 101.1 60.2 424 70.5 80.3 3105
I_10 1101 99.9 20.6 998 72.2 26.4 560 95.9 25.9 560 68.2 26.9 4094
I_11 1360 168 45.0 1064 114.4 58.4 608 129.8 50.1 588 104.2 60.3 1823
I_12 1660 138 32.8 1460 100.1 56.7 638 131.4 36.8 642 98.8 58.8 2012
I_13 1059 93.1 180.0 1003 78.6 180.0 682 109.8 180.0 648 69.4 180 2944
I_14 1658 175.2 115.3 1422 113.6 143.1 632 124.6 128.8 620 101.2 160.3 1885
I_15 1274 104.6 154.2 1200 74.3 180.0 686 85.2 160.2 668 68.4 180 2992
I_16 398 96.2 1.90 358 75.5 1.92 212 98.7 2.84 188 69.9 3.00 2508
I_17 102 117.8 2.13 102 89.7 3.30 94 99.4 3.52 84 82.5 3.58 2646
I_18 398 94.2 1.10 342 70.0 2.80 178 85.4 2.39 176 66.3 2.44 2425
I_19 110 124.1 1.98 104 91.3 2.52 88 117.3 3.77 80 84.2 4.02 2941
I_20 192 116.8 2.24 188 89.4 2.99 138 130.2 4.23 130 81.8 4.25 2984
I_21 897 86.3 28.5 808 66.6 42.3 542 89.5 33.2 550 62 44.2 1042
I_22 1004 98.6 30.3 960 71.3 38.3 680 88.3 31.2 618 64.3 40.1 1104
I_23 897 91.3 60.2 842 68.9 75 578 91.2 68.8 572 65.7 76.5 712
I_24 1104 84.6 50.4 988 69.4 55.1 608 90.7 55.9 558 61.2 55.4 704
I_25 923 111.7 68.3 920 90.0 80.0 574 114.4 70.3 528 87 82 886
I_26 1358 176.2 180 1250 121.0 180 622 140.0 180 622 103 180 3486
I_27 1460 143 180.0 1298 102.4 180.0 630 134.1 180.0 618 100.1 180 3644
I_28 978 108.2 48.3 930 74.1 68.7 564 90.4 53.8 580 68.3 75.5 2899
I_29 1327 153.3 87.6 1180 112.5 91.4 496 124.3 91.4 490 100.9 95.1 3248
I_30 878 156.2 49.9 808 108.4 65.9 434 125.4 55.8 434 89.4 70.9 2452
Average 823.97 118.26 45.53 745.67 86.33 52.1 424.18 108.47 47.09 409.42 79.63 54.63

We test the performance of PRST and R-PRST, where the latter method relaxes the hard constraints on the ending inventories of rolling stocks, but with a penality function. Table 7 in the main text reports results for six instances, and we here refer to Materials/P-RST-VS-RST.xlsx for the detailed results for the remaining 24 instances.

We test the performance improvement of different acceleration schemes, i.e., our proposed big-arc strategy, the greedy-based column generation (termed as S1), and bi-directional search (termed as S2), in which the latter heuristics are widely used in the literature. This allows us to compare eight approaches for solving the instances: no-acceleration (NS), only S1, only S2, S1 plus S2 (S1+S2), both with and without big-arcs. The following table represents the details results for the constructed 30 instances.

Instance NS S1 S2 S1+S2 NS S1 S2 S1+S2
Without big-arcs With big-arcs
I_1 4.8 3.98 2.45 2.43 4.57 4.50 1.90 1.88
I_2 5.51 5.02 4.22 2.98 5.28 4.45 2.88 2.13
I_3 1.03 1.04 1.03 1.03 1.03 1.05 1.04 1.08
I_4 2.98 2.88 2.65 2.48 2.78 2.55 2.09 1.98
I_5 2.96 2.92 2.92 2.87 2.54 2.42 2.33 2.21
I_6 14.3 12.2 13.2 10.2 10.5 9.2 10.4 8.6
I_7 76.8 55.6 68.7 52.3 54.3 36.4 52.1 34.5
I_8 70.3 58.3 63.2 48.4 50.9 39.2 48.8 37.3
I_9 99.8 85.4 89.7 77.2 80.4 64.2 78.5 55.3
I_10 20.9 17.9 16.4 15.3 15.7 12.0 14.3 10.6
I_11 60.1 52.3 59.1 51.2 54.3 47.8 50.2 45.0
I_12 50.0 42.4 48.7 39.1 45.2 37.5 35.5 32.8
I_13 288.2 250.4 277.5 242.3 229.9 188.9 220.4 186.0
I_14 180.7 166.9 178.4 164.2 134.7 130.3 133.5 115.3
I_15 190.8 179.4 185.5 174.3 179.4 160.9 168.6 154.2
I_16 2.21 2.01 2.20 1.95 2.02 2.01 2.20 1.90
I_17 3.53 2.98 2.99 2.21 2.45 2.23 2.44 2.21
I_18 2.32 2.40 1.22 1.08 1.90 1.90 1.23 1.10
I_19 3.01 3.00 1.90 1.89 2.20 2.11 2.10 1.98
I_20 3.87 3.74 2.98 2.25 3.01 2.98 2.42 2.24
I_21 49.8 42.2 40.3 32.3 33.7 30.5 29.8 28.5
I_22 42.5 40.9 40.0 38.0 41.4 40.8 33.5 30.3
I_23 80.4 80.1 80.0 78.1 74.4 74.3 60.8 60.2
I_24 95.4 90.9 90.3 82.5 69.2 69.1 52.5 50.4
I_25 94.1 87.6 89.2 83.9 76.9 70.4 74.2 68.3
I_26 264.9 235.0 252.3 223.4 210.9 202.5 209.0 198.7
I_27 288.9 275.5 287.4 272.2 270.3 265.4 268.8 254.4
I_28 75.5 69.5 70.0 59.8 60.4 55.2 56.6 48.3
I_29 122.2 120.2 117.9 101.2 98.8 90.3 91.2 87.6
I_30 80.1 71.3 70.9 68.6 65.6 52.4 55.4 49.9
Average 75.9 68.8 72.1 64.5 62.8 56.8 58.8 45.93

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages